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1. Mathematical model of the ocean hydrothermodynamics

d~u

dt
+


 0 −f

f 0


 ~u− g · gradξ + Au~u+ (Ak)

2~u = ~f − 1

ρ0
gradPa − g

ρ0
grad

z∫

0

ρ1(T, S)dz
′,

∂ξ

∂t
−m

∂

∂x
(

H∫

0

Θ(z)udz)−m
∂

∂y
(

H∫

0

Θ(z)
n

m
vdz) = f3,

dT

dt
+ ATT = fT ,

dS

dt
+ASS = fS ,

where ~u = (u, v) and f̄ = g · gradG, Θ(z) ≡ r(z)
R

, r = R− z, 0 < z < H, x ≡ λ, y ≡
θ, n ≡ 1/r, m ≡ 1/(r cos θ). The funtions G, f3, ξ0 ≡ ξ at t = 0 will be "additional

unknowns whih must be alulated too.
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Boundary conditions on the "sea surface"ΓS ≡ Ω at z = 0:








H∫

0

Θ~udz


 ~n+ β0mop

√
gH ξ = mop

√
gH ds on ∂Ω,

U
(−)
n u− ν

∂u

∂z
− k33

∂

∂z
Aku = τ

(a)
x

/
ρ0, U

(−)
n v − ν

∂v

∂z
− k33

∂

∂z
Akv = τ

(a)
y

/
ρ0,

Aku = 0, Akv = 0,

U
(−)
n T − νT

∂T

∂z
+ γT (T − Ta) = QT + U

(−)
n dT ,

U
(−)
n S − νS

∂S

∂z
+ γS(S − Sa) = QS + U

(−)
n dS ,

where

Un = ~U · ~N, ~U = (u, v, w) ≡ (~u,w), ~N = (n1, n2, n3) ≡ (~n, n3), U
(−)
n = (|Un| − Un)/2.

The boundary funtion dT , dS or QT , QS an be unknown also.
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With the funtion φ = (u, v, ξ, T, S) known, we alulate

w(x, y, z, t) =
1

r
(m

∂

∂x
(

H∫

z

rudz′) +m
∂

∂y
(
n

m

H∫

z

rvdz′)), (x, y, t) ∈ Ω× (0, t̄),

P (x, y, z, t) = Pa(x, y, t) + ρ0g(z − ξ) +

z∫

0

gρ1(T, S)dz
′.

Note, that for Un ≡ U ·N (here U = (u, v, w)) we always have

Un = 0 on Γc,w ∪ ΓH .
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2. Approximation by splitting method

General theory of splitting methods: G.I. Marhuk , N.N. Yanenko, À.À.

Samarsky.

Splitting method in data assimilation: Marhuk G.I., Zalesny V.B. (1993), Ì.

Wenzel, V.B. Zalesny (1996), V.B. Zalesny (2005).

Studies of inverse and assimilation problems for semidisrete models in the oean

dynamis: Agoshkov V.I. (2005-2008).

Studies of lass of inverse and data assimilation problems for oean dynamis

models obtained by splitting method: Agoshkov V.I. (2005, 2006), Zalesny V.B.

(2008, 2010), Agoshkov V.I., Parmuzin E.I., Zakharova N.B. (2010), Agoshkov

V.I., Parmuzin E.I., Shutyaev V.P.(2013).

MARES2020, 17-20 September, 2013 � p. 12/58



Problem I

Step 1. We onsider the system:





Tt + (Ū ,Grad)T −Div(âT ·Grad T ) = fT in D × (tj−1, tj),

T = Tj−1 for t = tj−1 in D,

Ū
(−)
n T − νT

∂T

∂z
+ γT (T − Ta) = QT + Ū

(−)
n dT on ΓS × (tj−1, tj),

∂T

∂NT

= 0 on Γw,c × (tj−1, tj),

Ū
(−)
n T +

∂T

∂NT

= Ū
(−)
n dT +QT on Γw,op × (tj−1, tj),

∂T

∂NT

= 0 on ΓH × (tj−1, tj),

Tj ≡ T on D × (tj−1, tj),

where Γw = Γw,c ∪ Γw,op - the �vertial lateral boundary�, ΓH - �the oean bottom�.
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We onsider the subproblem for T in the operator form as

(T )t + LT = F +BQ, t ∈ (tj−1, tj),

T = Tj−1, j = 1, 2, . . . , J,

and introdue the additional approximation by the splitting methods:

Step 1.1:

(T1)t + L1T1 = F1, t ∈ (tj−1, tj),

T1 = Tj−1 at t = tj−1

Step 1.2:

(T2)t + L2T2 = F2 +BQ, t ∈ (tj−1, tj),

T2(tj−1) = T1(tj).

T2(tj) ≡ Tj
∼= T at t = tj .
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The lassial form of the subproblem for T2 ≡ T is given by:





Tt +
1

2

(
w1

∂T

∂z
+

1

r2
∂(r2w1T )

∂z

)
− 1

r2
∂

∂z
r2νT

∂T

∂z
= fT in D at t ∈ (tj−1, tj),

T = T1(tj) at t = tj−1,

−νT
∂T

∂z
= Q at z = 0,

νT
∂T

∂z
= 0 at z = H,

where

Ū
(−)
n =

|Ūn| − Ūn

2
=

1

2
(|w̄1|+ w̄1) =

1

2
(|w̄|+ w̄) at z = 0,

Q ≡ QT − γT (T − Ta)− Ū
(−)
n T + Ū

(−)
n dT .
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Step 2.





St + (Ū ,Grad)S −Div(âS ·Grad S) = fS in D × (tj−1, tj),

S = Sj−1 at t = tj−1 in D,

Ū
(−)
n S − νS

∂S

∂z
+ γS(S − Sa) = QS + Ū

(−)
n dS on ΓS × (tj−1, tj),

∂S

∂NS

= 0 on Γw,c × (tj−1, tj),

Ū
(−)
n S +

∂S

∂NS

= Ū
(−)
n dS +QS on Γw,op × (tj−1, tj),

∂S

∂NS

= 0 on ΓH × (tj−1, tj),

Sj ≡ S on D × (tj−1, tj).

MARES2020, 17-20 September, 2013 � p. 16/58



We rewrite the subproblem for S in the operator form as

(S)t + LS = F +BQ, t ∈ (tj−1, tj),

S = Sj−1, j = 1, 2, . . . , J,

and introdue the additional approximation by the splitting methods:

Step 1.1:

(S1)t + L1S1 = F1, t ∈ (tj−1, tj),

S1 = Sj−1 at t = tj−1

Step 1.2:

(S2)t + L2S2 = F2 +BQ, t ∈ (tj−1, tj),

S2(tj−1) = S1(tj).

S2(tj) ≡ Sj
∼= S at t = tj .
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The lassial form of the subproblem for S2 ≡ S is given by:





St +
1

2

(
w1

∂S

∂z
+

1

r2
∂(r2w1S)

∂z

)
− 1

r2
∂

∂z
r2νS

∂S

∂z
= fS in D at t ∈ (tj−1, tj),

S = S1(tj) at t = tj−1,

−νS
∂S

∂z
= Q at z = 0,

νS
∂S

∂z
= 0 at z = H,

where

Ū
(−)
n =

|Ūn| − Ūn

2
=

1

2
(|w̄1|+ w̄1) =

1

2
(|w̄|+ w̄) at z = 0,

Q ≡ QS − γS(S − Sa)− Ū
(−)
n S + Ū

(−)
n dS .
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Step 3: The subproblems for the veloity omponents

Step 3.1





u
(1)
t +


 0 −ℓ

ℓ 0


u(1) − g · gradξ = g · gradG− 1

ρ0
grad

(
Pa + g

z∫
0

ρ1(T̄ , S̄)dz′
)

in D × (tj−1, tj),

ξt − div

(
H∫
0

Θu(1)dz

)
= f3 in Ω× (tj−1, tj),

u(1) = uj−1, ξ = ξj−1 at t = tj−1,(
H∫
0

Θu(1)dz

)
· n+ β0mop

√
gHξ = mop

√
gHds on ∂Ω× (tj−1, tj),

u
(1)
j ≡ u(1)(tj) in D

If we write down u(1)

in the following form: u(1) = U (1)(λ, θ, t) + u′(λ, θ, z, t) where

U (1) =
1

H1

∫ H

0
Θu(1)dz, H1 =

∫ H

0
Θdz,

then Step 3.1 is redued to two subproblems for the funtions U(1), u′

1 .
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Step 3.1

First of them is "The oean tide theory problem":





U
(1)
t +


 0 −ℓ

ℓ 0


U (1) − g grad ξ = g gradG− I in D × (tj−1, tj)

ξt − div(H1U
(1)) = f3 in Ω× (tj−1, tj)

U(1)(tj−1) =
1

H1

∫H
0 Θuj−1dz, ξ(tj−1) = ξj−1 in Ω

(H1U
(1)) · n+ β0mop

√
gHξ = mop

√
gHds

where

I = (Iλ, Iθ) =
1

ρ0

(
gradPa + g

1

H1

∫ H

0
Θdz

∫ z

0
grad ρ1(T̄ , S̄)dz′

)
.

The study and solution of this subproblem and its adjoint problem have the rusial

meaning for one of the inverse and data assimilation problems studied.
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The seond subproblem is :





(u′

1)t +


 0 −ℓ

ℓ 0


u′

1 = g
ρ0

(
1

H1

∫H
0 Θdz

∫ z
0 grad ρ1(T̄ , S̄)dz′

−
∫ z

0
grad ρ1(T̄ , S̄)dz′

)

u′

1(tj−1) = uj−1 − 1

H1

∫ H

0
Θuj−1dz
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Step 3.2





u
(2)
t +


 0 −f1(ū)

f1(ū) 0


u(2) = 0 in D × (tj−1, tj),

u(2) = u
(1)
j ïðè t = tj−1 in D,

u
(2)
j ≡ u(2)

(tj) in D,
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Step 3.3





u
(3)
t + (Ū ,Grad)u(3) −Div(âu ·Grad )u(3) + (Ak)

2u(3) = 0 in D × (tj−1, tj),

u(3) = u(2)

at t = tj−1 in D,

Ū
(−)
n u(3) − νu

∂u(3)

∂z
− k33

∂
∂z

(Aku
(3)) =

τ(a)

ρ0
, Aku

(3) = 0 on ΓS × (tj−1, tj),

U
(3)
n = 0, ∂U(3)

∂Nu
· τ̄w +

(
∂

∂Nk
Aku

(3)
)
· τw = 0, Aku

(3) = 0 on Γw,c × (tj−1, tj),

Ū
(−)
n (Ũ (3) ·N) + ∂Ũ(3)

∂Nu
· N̄ +

(
∂

∂Nk
Aku

(3)
)
· N̄ = Ū

(−)
n d, Aku

(3) = 0on Γw,op × (tj−1, tj),

Ū
(−)
n (Ũ (3) · τ̄w) + ∂Ũ(3)

∂Nu
· τ̄w +

(
∂

∂Nk
Aku

(3)
)
· τw = 0, Aku

(3) = 0 on Γw,op × (tj−1, tj),

∂u(3)

∂Nu
= τ(b)

ρ0

on ΓH × (tj−1, tj),

where

u(3) = (u(3), v(3)), τ (a) = (τ
(a)
x , τ

(a)
y ),

U (3) = (u(3), w(3)(u(3), v(3))), Ũ (3) = (u(3), 0), τ (b) = (τ
(b)
x , τ

(b)
y ).
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3. Inverse and variational data assimilation problems, I

Let us assume, that the unique funtion whih is obtained by observation data

proessing is the funtion ξobs on Ω̄ ≡ Ω ∪ ∂Ω at t ∈ (tj−1, tj), j = 1, 2, . . . , J . Let by

physial meaning this funtion is an approximation to sea level funtion ξ on Ω, i.e on

the boundary, when z = 0. We permit that the funtion ξobs is known only on the part

of Ω× (0, t̄) and we de�ne a support of this funtion as m0. Beyond of this area we

suppose funtion ξobs is trivial.

Let the funtions G, f3, ξ0 are �additional unknown funtions� and we state the

following inverse problem - Problem Inv 1: �nd the solution φ = (u, v, ξ, T, S) of the

Problem I and funtions G, f3, ξ0, suh that, m0(ξ − ξobs) = 0.

To study this inverse problem we apply general methodology for solving data

assimilation problems (Agoshkov V., 2003) and lassial results of the inverse problem

theory (A.N. Tikhonov, M.M. Lavrentiev, V.K. Ivanov, V.V. Vasin, V.G. Romanov,

M.V. Klibanov,Yu.E. Anikonov,S.I. Kabanikhin, A.Hasanov, V.G. Yakhno).
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Variational approach for solving the inverse problem

Introdue the ost funtional ℑα of the form:

ℑα ≡ ℑα(ξ0, G, f3,Φ) =
1

2

{
α0 t̄

∥∥∥ξ0 − ξ(0)
∥∥∥
2

L2(g;Ω)
+ αf

∥∥∥f3 − f
(0)
3

∥∥∥
2

L2(0,t̄;L2(g;Ω))

+αG

∥∥∥G−G(0)
∥∥∥
2

L2(0,t̄;L2(g;Ω))

}
+ ℑ0(Φ) =

J∑

j=1

tj∫

tj−1

ℑ(j)
α dt,

where

ℑ0(Φ) ≡ ℑ0(ξ) =
1

2
‖m0(ξ − ξobs)‖2L2(0,t̄;L2(g;Ω))

ℑ(j)
α =

1

2

{
α0∆tj

∥∥∥ξ0 − ξ(0)
∥∥∥
2

L2(g;Ω)
+ αf

∥∥∥f3 − f
(0)
3

∥∥∥
2

L2(g;Ω)
(t)

+αG

∥∥∥G−G(0)
∥∥∥
2

L2(g;Ω)
(t) + ‖m0(ξ − ξobs)‖2L2(g;Ω) (t)

}
.

Here α ≡ (α0, αf , αG), α0 ≥ 0, αf ≥ 0, αG ≥ 0 are regularization parameters that may

be dimensional values. Furthermore, it is possible to speify αf , αG depending on

α0 ≥ 0, (for instane, αG = α0, αf = α0 t̄2, et.).

We an formulate the data assimilation problem - Problem A 1: �nd the solution φ

of the Problem I and funtion G, f3, ξ0, suh that, the ost funtional is minimal on the

set of the solutions.
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Let us onsider the problem on the �rst time step (t0, t1). Then the optimality

onditions are:





t1α0(ξ0 − ξ(0)) + ξ∗(t0) = 0 in Ω

αf (f3 − f
(0)
3 ) + ξ∗ = 0 in Ω× (t0, t1)

αG(G−G(0))− div
(∫ H

0
Θu∗

1dz
)
= 0 in Ω× (t0, t1),

where ξ∗, u∗

1 are the solution of the adjoint problem:





−(u∗

1)t −


 0 −ℓ

ℓ 0


u∗

1 + g grad ξ∗ = 0 in D × (t0, t1)

−ξ∗t + div
(∫ H

0
Θu∗

1dz
)
= m0(ξ − ξobs) in Ω× (t0, t1)

−
(∫ H

0
Θu∗

1dz
)
· n+ β0mop

√
gHξ∗ = 0 on ∂Ω× (t0, t1)

ξ∗ = 0, u∗

1 = 0 at t = t1

(or here ξ∗ = m0(ξ − ξobs)(t1) at t = t1).
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De�nition : Problem Inv 1 is densely solvable if for any ǫ > 0 there is a solution φ of

the Problem I suh that ℑ0(φ) < ǫ.

Proposition 1. If supp(ξobs) = Ω̄× [t0, t1] and (G, f3)L2(g;Ω) = 0 ∀t then Problem

Inv1 is uniquely and densely solvable. The solution of Problem A1 an be taken as an

approximate solution of Problem Inv1 for su�iently small α.

Proposition 2. If mes(∂Ω ∩ Γw,op) > 0 and the funtion G is sought additionally only

then Problem Inv 1 is densely solvable.

Proposition 3. If mes(supp(ξobs)) > 0 and the funtion f3 is sought additionally only

then Problem Inv 1 is densely solvable.
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Iterative proess

For numerial implementation of the algorithm of solving the whole problem in (t0, t1)

it is su�ient to solve two initial-boundary problems for paraboli equations (after that

T and S will be de�ned in D × (t0, t1)) and arry out Step 3 inluding the data

assimilation blok. A numerial solution of the problem at Step 3 an be obtained by

the following iterative algorithm: if f
(k)
3 , G(k), ξ

(k)
0 are de�ned, we solve the

subproblems from the Step 3 for ξ0 = ξ
(k)
0 , f3 = f

(k)
3 , G = G(k)

and then solve adjoint

problem and ompute the new approximation f
(k+1)
3 , G(k+1), ξ

(k+1)
0 .





ξ
(k+1)
0 = ξ

(k)
0 − γk(α0(ξ

(k)
0 − ξ(0)) + ξ∗(t0)) in Ω

f
(k+1)
3 = f

(k)
3 − γk(αf (f

(k)
3 − f

(0)
3 ) + ξ∗) in Ω× (t0, t1)

G(k+1) = G(k) − γk

(
αG(G(k) −G(0))− div

( ∫H
0 Θu∗

1dz
))

in Ω× (t0, t1)

provided that

∫

Ω
G

(i)dΩ = 0 ∀i.
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In the ase of an appropriate seletion of parameters {γk} the iterative proess

onverges. In virtue of the ompat solvability property, the following values an be

assumed an e�ient hoie of γk:

γk =

1

2

∫ t1

t0

∫

Ω
m0(ξ

(k) − ξobs)
2
dΩdt

(∫

Ω
(ξ∗(t0))

2dΩ +

∫ t1

t0

∫

Ω
(ξ∗)2dΩdt+

∫ t1

t0

∫

Ω

(
div

∫ H

0
u
∗(k)
1 Θdz

)2
dΩdt

)
.

After the riterion of stopping the iteration proess is satis�ed, it is neessary to used

the omputed f
(k+1)
3 , G(k+1), ξ

(k+1)
0 to solve other subproblems from the Step 3 and to

obtain an approximate solution to the whole problem in D × (t0, t1).

After solving all problems and implementing the iteration proess in (t0, t1), the

variation assimilation problem is solved similarly in the subsequent intervals

(tj−1, tj), j = 2, 3, . . . . In view of the established properties of unique and

dense solvability of the onsidered Problem Inv and data assimilation

problem in eah time interval, we an state that the system of all

approximate solutions {φj} imparts the minimal value of whole ost

funtional, i.e., is the solution to the onsidered problem for the whole

interval (0, t̄ ).
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4. Inverse and variational data assimilation problems, II

Problem Inv 2

Assume that the sea surfae temperature (SST), observed on a subset Ω(j)
of Ω, is

denoted by Tobs ≡ T
(j)
obs

when t ∈ (tj−1, tj),m
(j)
0 is the harateristi funtion of this

subset (j = 1, 2, ..., J). Considering the boundary ondition for T at z = 0 we write it in

the following form:

−νT
∂T

∂z
= Q at z = 0 on Ω(j) × (tj−1, tj),

Ū
(−)
n T − νT

∂T

∂z
+ γT (T − Ta) = QT + Ū

(−)
n dT at z = 0 on (Ω\Ω(j))× (tj−1, tj),

where the funtion Q ≡ Q(j)(j = 1, 2, ..., J).

Let the funtions Q(j)

are �additional unknown funtions� and we state the following

inverse problem - Problem Inv 2: �nd the solution φ = (u, v, ξ, T, S) of the Problem

I and funtions Q(j)

, suh that, m
(j)
0 (T − T

(j)
obs

) = 0 on Ω, j = 1, 2, ..., J .

MARES2020, 17-20 September, 2013 � p. 30/58



Variational approach for solving the inverse problem

Introdue the ost funtional ℑα of the form:

ℑα ≡ ℑα(Q,Φ) =
1

2

t̄∫

0

∫

Ω

α|Q−Q(0)|2dΩdt+ ℑ0(Φ) =
J∑

j=1

tj∫

tj−1

ℑ(j)
α dt,

where

ℑ0(Φ) ≡ ℑ0(Q) =
1

2

t̄∫

0

∫

Ω0(t)

m0|T − Tobs|2dΩdt,

ℑ(j)
α =

1

2

tj∫

tj−1

∫

Ω(j)

α|Q−Q(0)|2dΩdt+
1

2

tj∫

tj−1

∫

Ω(j)

m
(j)
0 |T − T

(j)
obs

|2dΩdt.

Here α ≥ 0, is a �regularization� or �penalty� funtion, that may be onstant.

Data assimilation problem - Problem A 2: �nd the solution φ of the Problem I and

funtions {Q(j)}, suh that, the ost funtional is minimal on the set of the solutions.
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The optimality system obtained onsist of suessive solving the variational assimilation

problem on intervals t ∈ (tj−1, tj), j = 1, 2, . . . , J . The method an be disribed as

follows:

STEP 1. We solve system of equations, whih arise from minimization of the

funtional Jα on the set of the solution of the equations. This system onsists of

equations for T1, T2, Q and system of adjoint equations:



−(T ∗

2 )t + L∗

2T
∗

2 = B∗m
(1)
0 (T − T

(1)
obs

) in D × (t0, t1),

T ∗

2 = 0 for t = t1,



−(T ∗

1 )t + L∗

1T
∗

1 = 0 in D × (t0, t1),

T ∗

1 = T ∗

2 (t0) for t = t1

α(Q−Q(0)) + T ∗

2 = 0 on Ω
(1)
0 × (t0, t1).

Funtions T2, Q(t1) are aepted as approximations to funtions T,Q of the full solution

for the Problem I at t > t1, and T2(t1) ∼= T (t1) is taken as an initial ondition to solve

the problem on the interval (t1, t2).

STEP 2. Solve problem for S:
St + (Ū ,Grad)S −Div(âS ·Grad S) = fS in D × (t0, t1)

with orresponding boundary and initial onditions. After that the funtion S is aepted

as an approximate solution, and the funtion S(t1) is taken as an initial ondition for the

problem for the interval (t1, t2).

STEP 3. Solve equations of the veloity module.
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Iterative proess

Given Q(k)

one solve all subproblems from step 1, adjoint problem for this step and

de�ne new orretion Q(k+1)

Q(k+1) = Q(k) − γ
(j)
k

(α(Q(k) −Q(0)) + T ∗

2 ) on Ω
(j)
0 × (tj−1, tj).

Parameters {γk} an be alulated at α ≈ +0, by the property of dense solvability, as:

γ
(j)
k

=
1

2

tj∫
tj−1

∫

Ω
(j)
0

(T − T
(j)
obs

)2
∣∣∣
σ=0

dΩdt

tj∫
tj−1

∫

Ω
(j)
0

(T ∗

2 )
2
∣∣∣
σ=0

dΩdt

.

In view of the established properties of unique and dense solvability of the

onsidered Problem Inv and data assimilation problem in eah time

interval, we an state that the system of all approximate solutions {φj}

imparts the minimal value of whole ost funtional, i.e., is the solution to

the onsidered problem for the whole interval (0, t̄ ).
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De�nition : Problem Inv 2 is densely solvable if for any ǫ > 0 there is a solution φ of

the Problem I suh that ℑ0(φ) < ǫ.

Proposition 1. Problem Inv 2 is uniquely and densely solvable. The solution of

Problem A2 an be taken as an approximate solution of Problem Inv 2 for su�iently

small α.
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5. Inverse and variational data assimilation problems, III

Problem Inv 3

Assume that the sea surfae salinity (SSS), observed on a subset Ω(j)

of Ω, is denoted

by Sobs ≡ S
(j)
obs

when t ∈ (tj−1, tj),m
(j)
0 is the harateristi funtion of this subset

(j = 1, 2, ..., J). Considering the boundary ondition for S at z = 0 we write as:

−νS
∂S

∂z
= Q at z = 0 on Ω(j) × (tj−1, tj),

Ū
(−)
n S − νS

∂S

∂z
+ γS(S − Sa) = QS + Ū

(−)
n dS at z = 0 on (Ω\Ω(j))× (tj−1, tj),

where the funtion Q ≡ Q(j)(j = 1, 2, ..., J).

Let the funtions Q(j)

are �additional unknown funtions� and we state the following

inverse problem - Problem Inv 3: �nd the solution φ = (u, v, ξ, T, S) of the Problem

I and funtions Q(j)

, suh that, m
(j)
0 (S − S

(j)
obs

) = 0 on Ω, j = 1, 2, ..., J .
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Variational approach for solving the inverse problem

Introdue the ost funtional ℑα of the form:

ℑα ≡ ℑα(Q,Φ) =
1

2

t̄∫

0

∫

Ω

α|Q−Q(0)|2dΩdt+ ℑ0(Φ) =
J∑

j=1

tj∫

tj−1

ℑ(j)
α dt,

where

ℑ0(Φ) ≡ ℑ0(Q) =
1

2

t̄∫

0

∫

Ω0(t)

m0|S − Sobs|2dΩdt,

ℑ(j)
α =

1

2

tj∫

tj−1

∫

Ω(j)

α|Q−Q(0)|2dΩdt+
1

2

tj∫

tj−1

∫

Ω(j)

m
(j)
0 |S − S

(j)
obs

|2dΩdt.

Here α ≥ 0, is a "regularization"or "penalty"funtion ,that may be onstant.

Data assimilation problem - Problem A 3: �nd the solution φ of the Problem I and

funtions {Q(j)}, suh that, the ost funtional is minimal on the set of the solutions.

This problem for the ase Ω(j) ≡ Ω(j = 1, 2, ..., J) has been studied and numerially

solved by Agoshkov V.I., Parmuzin E.I. and Shutyaev V.P.[2008℄.
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De�nition : Problem Inv 3 is densely solvable if for any ǫ > 0 there is a solution φ of

the Problem I suh that ℑ0(φ) < ǫ.

Proposition 1. Problem Inv 3 is uniquely and densely solvable. The solution of

Problem A3 an be taken as an approximate solution of Problem Inv 3 for su�iently

small α.
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The optimality system obtained onsist of suessive solving the variational assimilation

problem on intervals t ∈ (tj−1, tj), j = 1, 2, . . . , J . The method an be disribed as

follows:

STEP 1. Solve problem for T :

Tt + (Ū ,Grad)T −Div(âT ·Grad T ) = fT in D × (t0, t1)

with orresponding boundary and initial onditions. After that the funtion T is aepted

as an approximate solution, and the funtion T (t1) is taken as an initial ondition for

the problem for the interval (t1, t2).

STEP 2. We solve system of equations, whih arise from minimization of the

funtional Jα on the set of the solution of the equations. This system onsists of

equations for S1, S2, Q and system of adjoint equations:



−(S∗

2 )t + L∗

2S
∗

2 = B∗m
(1)
0 (S − S

(1)
obs

) in D × (t0, t1),

S∗

2 = 0 for t = t1,



−(S∗

1 )t + L∗

1S
∗

1 = 0 in D × (t0, t1),

S∗

1 = S∗

2 (t0) for t = t1

α(Q−Q(0)) + S∗

2 = 0 on Ω
(1)
0 × (t0, t1).

Funtions S2, Q(t1) are aepted as approximations to funtions S,Q of the full solution

for the Problem I at t > t1, and S2(t1) ∼= S(t1) is taken as an initial ondition to solve

the problem on the interval (t1, t2).

STEP 3. Solve equations of the veloity module.
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Iterative proess

Given Q(k)

one solve all subproblems from step 1, adjoint problem for this step and

de�ne new orretion Q(k+1)

Q(k+1) = Q(k) − γ
(j)
k

(α(Q(k) −Q(0)) + S∗

2 ) on Ω
(j)
0 × (tj−1, tj).

Parameters {γk} an be alulated at α ≈ +0, by the property of dense solvability, as:

γ
(j)
k

=
1

2

tj∫
tj−1

∫

Ω
(j)
0

(S − S
(j)
obs

)2
∣∣∣
σ=0

dΩdt

tj∫
tj−1

∫

Ω
(j)
0

(S∗

2 )
2
∣∣∣
σ=0

dΩdt

.

In view of the established properties of unique and dense solvability of the

onsidered Problem Inv and data assimilation problem in eah time

interval, we an state that the system of all approximate solutions {φj}

imparts the minimal value of whole ost funtional, i.e., is the solution to

the onsidered problem for the whole interval (0, t̄ ).
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6. Information support of solving data assimilation problems

1. Data base (Lebedev S.A., 2005-2010, N.B.Zakharova 2011-2013)
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6.1. New interpolation method. World Oean (Agoshkov V.I., Zakharova N.B., 2012)

(a) Observation Data (ARGO) (b) SST after interpolation
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6.2. New interpolation method. Blak Sea(Agoshkov V.I., Zakharova N.B., Parmuzin

E.I., 2013)

() Observation Data 13:58, 22th of

January 2008

(d) SST after interpolation. The radius of

the �neighbourhood� of the nodal point is

0.2 degrees, ∆k = 12 hours
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7. Numerial solving some variational

data assimilation problems in the

Blak Sea hydrothermodynamis

model.
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7.1. Mathematical model of the Black Sea hydrothermodynamics

Suppositions

The Earth is the GEOID (Listing, 1872)

All terms of the order ε ≡ (a− b)/a in the mathematial

models are omitted

The surfae z = 0 is the surfae of the �Normal Earth� ellipsoid

The mathematial model was write down using �formally�

spherial oordinates and the �spherial approximations� is

taking

The Boussinesq and hydrostati approximations are introdued

The visosity fores are desribed by ellipti operators of 2-nd

and 4-th orders applying salar funtions (Zalesny V.B.,

Diansky N.A., Gusev A.V.)
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Mathematical model

d~u

dt
+


 0 −f

f 0


 ~u− g · gradξ + Au~u+ (Ak)

2~u = ~f − 1

ρ0
gradPa − g

ρ0
grad

z∫

0

ρ1(T, S)dz
′,

∂ξ

∂t
−m

∂

∂x
(

H∫

0

Θ(z)udz)−m
∂

∂y
(

H∫

0

Θ(z)
n

m
vdz) = f3,

dT

dt
+ ATT = fT ,

dS

dt
+ASS = fS ,

where ~u = (u, v),

Θ(z) ≡ r(z)
R

, r = R− z, 0 < z < H, x ≡ λ, y ≡ θ, n ≡ 1/r, m ≡ 1/(r cos θ). The

funtions f3, ξ0 ≡ ξ at t = 0 will be "additional unknowns whih must be alulated too.
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Mathematical model

Here:

~f = ∇
[
Ω̃np − βγ0ζ0,np

]
+∇Ψ,

where

ζ0,np ≡ AM0ζM0 +AS0ζS0 = A0(1− 3 sin2 θ)/2, A0 = 73, 87[sm],

Ω̃np
∼= γ0(AM0ζM0 +AS0ζS0 ) +

4∑
j=1

γjCj cos(σjt+ sjλ+ qj),

or

Ω̃np = γ0Ωnp

j = O1,K1,M2, S2,

Ψ(λ,Θ, t) - �additional potential� of �self-attration� fores

β = 0, if ζ is alulated from the geoid surfae,

β = 1, if ζ is alulated from the mean see level.

The funtion Ψ(λ, θ, t) an be unknown (then the funtion G ≡ Ω̃np − βγ0ζ0,np +Ψ is

unknown also).
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Boundary conditions on the "sea surface"ΓS ≡ Ω at z = 0:








H∫

0

Θ~udz


 ~n+ β0mop

√
gH ξ = mop

√
gH ds on ∂Ω,

U
(−)
n u− ν

∂u

∂z
− k33

∂

∂z
Aku = τ

(a)
x

/
ρ0, U

(−)
n v − ν

∂v

∂z
− k33

∂

∂z
Akv = τ

(a)
y

/
ρ0,

Aku = 0, Akv = 0,

U
(−)
n T − νT

∂T

∂z
+ γT (T − Ta) = QT + U

(−)
n dT ,

U
(−)
n S − νS

∂S

∂z
+ γS(S − Sa) = QS + U

(−)
n dS ,

where

Un = ~U · ~N, ~U = (u, v, w) ≡ (~u,w), ~N = (n1, n2, n3) ≡ (~n, n3), U
(−)
n = (|Un| − Un)/2.

The boundary funtion dT , dS or QT , QS an be unknown also.

MARES2020, 17-20 September, 2013 � p. 47/58



With the funtion φ = (u, v, ξ, T, S) known, we alulate

w(x, y, z, t) =
1

r
(m

∂

∂x
(

H∫

z

rudz′) +m
∂

∂y
(
n

m

H∫

z

rvdz′)), (x, y, t) ∈ Ω× (0, t̄),

P (x, y, z, t) = Pa(x, y, t) + ρ0g(z − ξ) +

z∫

0

gρ1(T, S)dz
′.

Note, that for Un ≡ U ·N (here U = (u, v, w)) we always have

Un = 0 on Γc,w ∪ ΓH .
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135-161;

V. I. Agoshkov, S. A. Lebedev, and E. I. Parmuzin Numerial Solution to the

Problem of Variational Assimilation of Operational Observational Data on the

Oean Surfae Temperature, Izvestiya, Atmospheri and Oeani Physis, 2009,

Vol. 45, No. 1, pp. 69�101;
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solution of the inverse problem of heat �ows in the oean dynamis model based

on ARGO buoys data. Russ. J. Numer. Anal. Math. Modelling, 2011, V. 26, No.

3, pp. 231-261
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7.2 Numerical experiments

The objet of simulation is the Blak Sea. We an desribe the

parameters of the area studied and its geographial oordinates are:

the grid 286x159x27 (latitude×longitude×depth). The grid steps with

respet to x and y are onstant and equal 0.05 and 0.04 degrees,

respetively. The time step is equal to ∆t = 5 minutes.

The data of SST, whih was obtained from Geophysial Center of

RAS (Lebedev S.A.), were used for the onstrution of the funtion

Tobs at ertain time steps at some points of Blak Sea basin.

The mean �ux for January Q(0)

was taken from the database of NCEP

(National Centers for Environmental Predition).

The observation data assimilation module to assimilate Tobs was

inluded into the thermohydrodynamis model of the Blak Sea. The

time period taken in experiments is 5 days (start from January 2008).
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7.2.1 Numerial experiments: the Blak Sea irulation model, SST

assimilation, alulations of the �ux Q at z = 0

(a) Calulation using data assimilation

(b) Calulation by the model

() Observation of SST
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(a) Deviation assimilated SST from

observations

(b) Deviation model SST from

observations
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7.2.2 Numerial experiments: The Blak Sea and Azov Sea irulation

models, assimilation of mean sea level, alulations of the �self-attration�

fores, the tide potential is of omplete form

(a) Mean sea level (MSL) (b) MSL + onst

() MSL (with the omplete

potential and assimilation)

(d) MSL by the model (without tidal

fores and assimilation)
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(a) The in�uene of the onstant harmonis of the tide potential
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Tides in 5th January 2008

(a) tides0h (b) tides6h () tides12h

(d) tides18h (e) tides24h
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Conclusion

The results obtained in INM RAS are the theoretial bakground for the

onstrution of Informational-omputational systems for variational data

assimilation into the oean irulation model and into the Blak Sea model.

Next step of the studying:

the improving the mathematial model (liquid boundaries onditions, input

data and oth.)

algorithm of the oupling of the Blak Sea and Azov Sea mathematial

models

using the empirial relations in data assimilations proedures
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