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1. Mathematical model of the ocean hydrothermodynamics

d~u

dt
+


 0 −f

f 0


 ~u− g · gradξ + Au~u+ (Ak)

2~u = ~f − 1

ρ0
gradPa − g

ρ0
grad

z∫

0

ρ1(T, S)dz
′,

∂ξ

∂t
−m

∂

∂x
(

H∫

0

Θ(z)udz)−m
∂

∂y
(

H∫

0

Θ(z)
n

m
vdz) = f3,

dT

dt
+ ATT = fT ,

dS

dt
+ASS = fS ,

where ~u = (u, v) and f̄ = g · gradG, Θ(z) ≡ r(z)
R

, r = R− z, 0 < z < H, x ≡ λ, y ≡
θ, n ≡ 1/r, m ≡ 1/(r cos θ). The fun
tions G, f3, ξ0 ≡ ξ at t = 0 will be "additional

unknowns whi
h must be 
al
ulated too.

MARES2020, 17-20 September, 2013 � p. 6/58



Boundary conditions on the "sea surface"ΓS ≡ Ω at z = 0:








H∫

0

Θ~udz


 ~n+ β0mop

√
gH ξ = mop

√
gH ds on ∂Ω,

U
(−)
n u− ν

∂u

∂z
− k33

∂

∂z
Aku = τ

(a)
x

/
ρ0, U

(−)
n v − ν

∂v

∂z
− k33

∂

∂z
Akv = τ

(a)
y

/
ρ0,

Aku = 0, Akv = 0,

U
(−)
n T − νT

∂T

∂z
+ γT (T − Ta) = QT + U

(−)
n dT ,

U
(−)
n S − νS

∂S

∂z
+ γS(S − Sa) = QS + U

(−)
n dS ,

where

Un = ~U · ~N, ~U = (u, v, w) ≡ (~u,w), ~N = (n1, n2, n3) ≡ (~n, n3), U
(−)
n = (|Un| − Un)/2.

The boundary fun
tion dT , dS or QT , QS 
an be unknown also.
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With the fun
tion φ = (u, v, ξ, T, S) known, we 
al
ulate

w(x, y, z, t) =
1

r
(m

∂

∂x
(

H∫

z

rudz′) +m
∂

∂y
(
n

m

H∫

z

rvdz′)), (x, y, t) ∈ Ω× (0, t̄),

P (x, y, z, t) = Pa(x, y, t) + ρ0g(z − ξ) +

z∫

0

gρ1(T, S)dz
′.

Note, that for Un ≡ U ·N (here U = (u, v, w)) we always have

Un = 0 on Γc,w ∪ ΓH .
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2. Approximation by splitting method

General theory of splitting methods: G.I. Mar
huk , N.N. Yanenko, À.À.

Samarsky.

Splitting method in data assimilation: Mar
huk G.I., Zalesny V.B. (1993), Ì.

Wenzel, V.B. Zalesny (1996), V.B. Zalesny (2005).

Studies of inverse and assimilation problems for semidis
rete models in the o
ean

dynami
s: Agoshkov V.I. (2005-2008).

Studies of 
lass of inverse and data assimilation problems for o
ean dynami
s

models obtained by splitting method: Agoshkov V.I. (2005, 2006), Zalesny V.B.

(2008, 2010), Agoshkov V.I., Parmuzin E.I., Zakharova N.B. (2010), Agoshkov

V.I., Parmuzin E.I., Shutyaev V.P.(2013).
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Problem I

Step 1. We 
onsider the system:





Tt + (Ū ,Grad)T −Div(âT ·Grad T ) = fT in D × (tj−1, tj),

T = Tj−1 for t = tj−1 in D,

Ū
(−)
n T − νT

∂T

∂z
+ γT (T − Ta) = QT + Ū

(−)
n dT on ΓS × (tj−1, tj),

∂T

∂NT

= 0 on Γw,c × (tj−1, tj),

Ū
(−)
n T +

∂T

∂NT

= Ū
(−)
n dT +QT on Γw,op × (tj−1, tj),

∂T

∂NT

= 0 on ΓH × (tj−1, tj),

Tj ≡ T on D × (tj−1, tj),

where Γw = Γw,c ∪ Γw,op - the �verti
al lateral boundary�, ΓH - �the o
ean bottom�.
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We 
onsider the subproblem for T in the operator form as

(T )t + LT = F +BQ, t ∈ (tj−1, tj),

T = Tj−1, j = 1, 2, . . . , J,

and introdu
e the additional approximation by the splitting methods:

Step 1.1:

(T1)t + L1T1 = F1, t ∈ (tj−1, tj),

T1 = Tj−1 at t = tj−1

Step 1.2:

(T2)t + L2T2 = F2 +BQ, t ∈ (tj−1, tj),

T2(tj−1) = T1(tj).

T2(tj) ≡ Tj
∼= T at t = tj .
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The 
lassi
al form of the subproblem for T2 ≡ T is given by:





Tt +
1

2

(
w1

∂T

∂z
+

1

r2
∂(r2w1T )

∂z

)
− 1

r2
∂

∂z
r2νT

∂T

∂z
= fT in D at t ∈ (tj−1, tj),

T = T1(tj) at t = tj−1,

−νT
∂T

∂z
= Q at z = 0,

νT
∂T

∂z
= 0 at z = H,

where

Ū
(−)
n =

|Ūn| − Ūn

2
=

1

2
(|w̄1|+ w̄1) =

1

2
(|w̄|+ w̄) at z = 0,

Q ≡ QT − γT (T − Ta)− Ū
(−)
n T + Ū

(−)
n dT .
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Step 2.





St + (Ū ,Grad)S −Div(âS ·Grad S) = fS in D × (tj−1, tj),

S = Sj−1 at t = tj−1 in D,

Ū
(−)
n S − νS

∂S

∂z
+ γS(S − Sa) = QS + Ū

(−)
n dS on ΓS × (tj−1, tj),

∂S

∂NS

= 0 on Γw,c × (tj−1, tj),

Ū
(−)
n S +

∂S

∂NS

= Ū
(−)
n dS +QS on Γw,op × (tj−1, tj),

∂S

∂NS

= 0 on ΓH × (tj−1, tj),

Sj ≡ S on D × (tj−1, tj).
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We rewrite the subproblem for S in the operator form as

(S)t + LS = F +BQ, t ∈ (tj−1, tj),

S = Sj−1, j = 1, 2, . . . , J,

and introdu
e the additional approximation by the splitting methods:

Step 1.1:

(S1)t + L1S1 = F1, t ∈ (tj−1, tj),

S1 = Sj−1 at t = tj−1

Step 1.2:

(S2)t + L2S2 = F2 +BQ, t ∈ (tj−1, tj),

S2(tj−1) = S1(tj).

S2(tj) ≡ Sj
∼= S at t = tj .
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The 
lassi
al form of the subproblem for S2 ≡ S is given by:





St +
1

2

(
w1

∂S

∂z
+

1

r2
∂(r2w1S)

∂z

)
− 1

r2
∂

∂z
r2νS

∂S

∂z
= fS in D at t ∈ (tj−1, tj),

S = S1(tj) at t = tj−1,

−νS
∂S

∂z
= Q at z = 0,

νS
∂S

∂z
= 0 at z = H,

where

Ū
(−)
n =

|Ūn| − Ūn

2
=

1

2
(|w̄1|+ w̄1) =

1

2
(|w̄|+ w̄) at z = 0,

Q ≡ QS − γS(S − Sa)− Ū
(−)
n S + Ū

(−)
n dS .
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Step 3: The subproblems for the velo
ity 
omponents

Step 3.1





u
(1)
t +


 0 −ℓ

ℓ 0


u(1) − g · gradξ = g · gradG− 1

ρ0
grad

(
Pa + g

z∫
0

ρ1(T̄ , S̄)dz′
)

in D × (tj−1, tj),

ξt − div

(
H∫
0

Θu(1)dz

)
= f3 in Ω× (tj−1, tj),

u(1) = uj−1, ξ = ξj−1 at t = tj−1,(
H∫
0

Θu(1)dz

)
· n+ β0mop

√
gHξ = mop

√
gHds on ∂Ω× (tj−1, tj),

u
(1)
j ≡ u(1)(tj) in D

If we write down u(1)

in the following form: u(1) = U (1)(λ, θ, t) + u′(λ, θ, z, t) where

U (1) =
1

H1

∫ H

0
Θu(1)dz, H1 =

∫ H

0
Θdz,

then Step 3.1 is redu
ed to two subproblems for the fun
tions U(1), u′

1 .
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Step 3.1

First of them is "The o
ean tide theory problem":





U
(1)
t +


 0 −ℓ

ℓ 0


U (1) − g grad ξ = g gradG− I in D × (tj−1, tj)

ξt − div(H1U
(1)) = f3 in Ω× (tj−1, tj)

U(1)(tj−1) =
1

H1

∫H
0 Θuj−1dz, ξ(tj−1) = ξj−1 in Ω

(H1U
(1)) · n+ β0mop

√
gHξ = mop

√
gHds

where

I = (Iλ, Iθ) =
1

ρ0

(
gradPa + g

1

H1

∫ H

0
Θdz

∫ z

0
grad ρ1(T̄ , S̄)dz′

)
.

The study and solution of this subproblem and its adjoint problem have the 
rusial

meaning for one of the inverse and data assimilation problems studied.
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The se
ond subproblem is :





(u′

1)t +


 0 −ℓ

ℓ 0


u′

1 = g
ρ0

(
1

H1

∫H
0 Θdz

∫ z
0 grad ρ1(T̄ , S̄)dz′

−
∫ z

0
grad ρ1(T̄ , S̄)dz′

)

u′

1(tj−1) = uj−1 − 1

H1

∫ H

0
Θuj−1dz
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Step 3.2





u
(2)
t +


 0 −f1(ū)

f1(ū) 0


u(2) = 0 in D × (tj−1, tj),

u(2) = u
(1)
j ïðè t = tj−1 in D,

u
(2)
j ≡ u(2)

(tj) in D,
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Step 3.3





u
(3)
t + (Ū ,Grad)u(3) −Div(âu ·Grad )u(3) + (Ak)

2u(3) = 0 in D × (tj−1, tj),

u(3) = u(2)

at t = tj−1 in D,

Ū
(−)
n u(3) − νu

∂u(3)

∂z
− k33

∂
∂z

(Aku
(3)) =

τ(a)

ρ0
, Aku

(3) = 0 on ΓS × (tj−1, tj),

U
(3)
n = 0, ∂U(3)

∂Nu
· τ̄w +

(
∂

∂Nk
Aku

(3)
)
· τw = 0, Aku

(3) = 0 on Γw,c × (tj−1, tj),

Ū
(−)
n (Ũ (3) ·N) + ∂Ũ(3)

∂Nu
· N̄ +

(
∂

∂Nk
Aku

(3)
)
· N̄ = Ū

(−)
n d, Aku

(3) = 0on Γw,op × (tj−1, tj),

Ū
(−)
n (Ũ (3) · τ̄w) + ∂Ũ(3)

∂Nu
· τ̄w +

(
∂

∂Nk
Aku

(3)
)
· τw = 0, Aku

(3) = 0 on Γw,op × (tj−1, tj),

∂u(3)

∂Nu
= τ(b)

ρ0

on ΓH × (tj−1, tj),

where

u(3) = (u(3), v(3)), τ (a) = (τ
(a)
x , τ

(a)
y ),

U (3) = (u(3), w(3)(u(3), v(3))), Ũ (3) = (u(3), 0), τ (b) = (τ
(b)
x , τ

(b)
y ).
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3. Inverse and variational data assimilation problems, I

Let us assume, that the unique fun
tion whi
h is obtained by observation data

pro
essing is the fun
tion ξobs on Ω̄ ≡ Ω ∪ ∂Ω at t ∈ (tj−1, tj), j = 1, 2, . . . , J . Let by

physi
al meaning this fun
tion is an approximation to sea level fun
tion ξ on Ω, i.e on

the boundary, when z = 0. We permit that the fun
tion ξobs is known only on the part

of Ω× (0, t̄) and we de�ne a support of this fun
tion as m0. Beyond of this area we

suppose fun
tion ξobs is trivial.

Let the fun
tions G, f3, ξ0 are �additional unknown fun
tions� and we state the

following inverse problem - Problem Inv 1: �nd the solution φ = (u, v, ξ, T, S) of the

Problem I and fun
tions G, f3, ξ0, su
h that, m0(ξ − ξobs) = 0.

To study this inverse problem we apply general methodology for solving data

assimilation problems (Agoshkov V., 2003) and 
lassi
al results of the inverse problem

theory (A.N. Tikhonov, M.M. Lavrentiev, V.K. Ivanov, V.V. Vasin, V.G. Romanov,

M.V. Klibanov,Yu.E. Anikonov,S.I. Kabanikhin, A.Hasanov, V.G. Yakhno).
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Variational approach for solving the inverse problem

Introdu
e the 
ost fun
tional ℑα of the form:

ℑα ≡ ℑα(ξ0, G, f3,Φ) =
1

2

{
α0 t̄

∥∥∥ξ0 − ξ(0)
∥∥∥
2

L2(g;Ω)
+ αf

∥∥∥f3 − f
(0)
3

∥∥∥
2

L2(0,t̄;L2(g;Ω))

+αG

∥∥∥G−G(0)
∥∥∥
2

L2(0,t̄;L2(g;Ω))

}
+ ℑ0(Φ) =

J∑

j=1

tj∫

tj−1

ℑ(j)
α dt,

where

ℑ0(Φ) ≡ ℑ0(ξ) =
1

2
‖m0(ξ − ξobs)‖2L2(0,t̄;L2(g;Ω))

ℑ(j)
α =

1

2

{
α0∆tj

∥∥∥ξ0 − ξ(0)
∥∥∥
2

L2(g;Ω)
+ αf

∥∥∥f3 − f
(0)
3

∥∥∥
2

L2(g;Ω)
(t)

+αG

∥∥∥G−G(0)
∥∥∥
2

L2(g;Ω)
(t) + ‖m0(ξ − ξobs)‖2L2(g;Ω) (t)

}
.

Here α ≡ (α0, αf , αG), α0 ≥ 0, αf ≥ 0, αG ≥ 0 are regularization parameters that may

be dimensional values. Furthermore, it is possible to spe
ify αf , αG depending on

α0 ≥ 0, (for instan
e, αG = α0, αf = α0 t̄2, et
.).

We 
an formulate the data assimilation problem - Problem A 1: �nd the solution φ

of the Problem I and fun
tion G, f3, ξ0, su
h that, the 
ost fun
tional is minimal on the

set of the solutions.
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Let us 
onsider the problem on the �rst time step (t0, t1). Then the optimality


onditions are:





t1α0(ξ0 − ξ(0)) + ξ∗(t0) = 0 in Ω

αf (f3 − f
(0)
3 ) + ξ∗ = 0 in Ω× (t0, t1)

αG(G−G(0))− div
(∫ H

0
Θu∗

1dz
)
= 0 in Ω× (t0, t1),

where ξ∗, u∗

1 are the solution of the adjoint problem:





−(u∗

1)t −


 0 −ℓ

ℓ 0


u∗

1 + g grad ξ∗ = 0 in D × (t0, t1)

−ξ∗t + div
(∫ H

0
Θu∗

1dz
)
= m0(ξ − ξobs) in Ω× (t0, t1)

−
(∫ H

0
Θu∗

1dz
)
· n+ β0mop

√
gHξ∗ = 0 on ∂Ω× (t0, t1)

ξ∗ = 0, u∗

1 = 0 at t = t1

(or here ξ∗ = m0(ξ − ξobs)(t1) at t = t1).
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De�nition : Problem Inv 1 is densely solvable if for any ǫ > 0 there is a solution φ of

the Problem I su
h that ℑ0(φ) < ǫ.

Proposition 1. If supp(ξobs) = Ω̄× [t0, t1] and (G, f3)L2(g;Ω) = 0 ∀t then Problem

Inv1 is uniquely and densely solvable. The solution of Problem A1 
an be taken as an

approximate solution of Problem Inv1 for su�
iently small α.

Proposition 2. If mes(∂Ω ∩ Γw,op) > 0 and the fun
tion G is sought additionally only

then Problem Inv 1 is densely solvable.

Proposition 3. If mes(supp(ξobs)) > 0 and the fun
tion f3 is sought additionally only

then Problem Inv 1 is densely solvable.
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Iterative pro
ess

For numeri
al implementation of the algorithm of solving the whole problem in (t0, t1)

it is su�
ient to solve two initial-boundary problems for paraboli
 equations (after that

T and S will be de�ned in D × (t0, t1)) and 
arry out Step 3 in
luding the data

assimilation blo
k. A numeri
al solution of the problem at Step 3 
an be obtained by

the following iterative algorithm: if f
(k)
3 , G(k), ξ

(k)
0 are de�ned, we solve the

subproblems from the Step 3 for ξ0 = ξ
(k)
0 , f3 = f

(k)
3 , G = G(k)

and then solve adjoint

problem and 
ompute the new approximation f
(k+1)
3 , G(k+1), ξ

(k+1)
0 .





ξ
(k+1)
0 = ξ

(k)
0 − γk(α0(ξ

(k)
0 − ξ(0)) + ξ∗(t0)) in Ω

f
(k+1)
3 = f

(k)
3 − γk(αf (f

(k)
3 − f

(0)
3 ) + ξ∗) in Ω× (t0, t1)

G(k+1) = G(k) − γk

(
αG(G(k) −G(0))− div

( ∫H
0 Θu∗

1dz
))

in Ω× (t0, t1)

provided that

∫

Ω
G

(i)dΩ = 0 ∀i.
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In the 
ase of an appropriate sele
tion of parameters {γk} the iterative pro
ess


onverges. In virtue of the 
ompa
t solvability property, the following values 
an be

assumed an e�
ient 
hoi
e of γk:

γk =

1

2

∫ t1

t0

∫

Ω
m0(ξ

(k) − ξobs)
2
dΩdt

(∫

Ω
(ξ∗(t0))

2dΩ +

∫ t1

t0

∫

Ω
(ξ∗)2dΩdt+

∫ t1

t0

∫

Ω

(
div

∫ H

0
u
∗(k)
1 Θdz

)2
dΩdt

)
.

After the 
riterion of stopping the iteration pro
ess is satis�ed, it is ne
essary to used

the 
omputed f
(k+1)
3 , G(k+1), ξ

(k+1)
0 to solve other subproblems from the Step 3 and to

obtain an approximate solution to the whole problem in D × (t0, t1).

After solving all problems and implementing the iteration pro
ess in (t0, t1), the

variation assimilation problem is solved similarly in the subsequent intervals

(tj−1, tj), j = 2, 3, . . . . In view of the established properties of unique and

dense solvability of the 
onsidered Problem Inv and data assimilation

problem in ea
h time interval, we 
an state that the system of all

approximate solutions {φj} imparts the minimal value of whole 
ost

fun
tional, i.e., is the solution to the 
onsidered problem for the whole

interval (0, t̄ ).
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4. Inverse and variational data assimilation problems, II

Problem Inv 2

Assume that the sea surfa
e temperature (SST), observed on a subset Ω(j)
of Ω, is

denoted by Tobs ≡ T
(j)
obs

when t ∈ (tj−1, tj),m
(j)
0 is the 
hara
teristi
 fun
tion of this

subset (j = 1, 2, ..., J). Considering the boundary 
ondition for T at z = 0 we write it in

the following form:

−νT
∂T

∂z
= Q at z = 0 on Ω(j) × (tj−1, tj),

Ū
(−)
n T − νT

∂T

∂z
+ γT (T − Ta) = QT + Ū

(−)
n dT at z = 0 on (Ω\Ω(j))× (tj−1, tj),

where the fun
tion Q ≡ Q(j)(j = 1, 2, ..., J).

Let the fun
tions Q(j)

are �additional unknown fun
tions� and we state the following

inverse problem - Problem Inv 2: �nd the solution φ = (u, v, ξ, T, S) of the Problem

I and fun
tions Q(j)

, su
h that, m
(j)
0 (T − T

(j)
obs

) = 0 on Ω, j = 1, 2, ..., J .
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Variational approach for solving the inverse problem

Introdu
e the 
ost fun
tional ℑα of the form:

ℑα ≡ ℑα(Q,Φ) =
1

2

t̄∫

0

∫

Ω

α|Q−Q(0)|2dΩdt+ ℑ0(Φ) =
J∑

j=1

tj∫

tj−1

ℑ(j)
α dt,

where

ℑ0(Φ) ≡ ℑ0(Q) =
1

2

t̄∫

0

∫

Ω0(t)

m0|T − Tobs|2dΩdt,

ℑ(j)
α =

1

2

tj∫

tj−1

∫

Ω(j)

α|Q−Q(0)|2dΩdt+
1

2

tj∫

tj−1

∫

Ω(j)

m
(j)
0 |T − T

(j)
obs

|2dΩdt.

Here α ≥ 0, is a �regularization� or �penalty� fun
tion, that may be 
onstant.

Data assimilation problem - Problem A 2: �nd the solution φ of the Problem I and

fun
tions {Q(j)}, su
h that, the 
ost fun
tional is minimal on the set of the solutions.
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The optimality system obtained 
onsist of su

essive solving the variational assimilation

problem on intervals t ∈ (tj−1, tj), j = 1, 2, . . . , J . The method 
an be dis
ribed as

follows:

STEP 1. We solve system of equations, whi
h arise from minimization of the

fun
tional Jα on the set of the solution of the equations. This system 
onsists of

equations for T1, T2, Q and system of adjoint equations:



−(T ∗

2 )t + L∗

2T
∗

2 = B∗m
(1)
0 (T − T

(1)
obs

) in D × (t0, t1),

T ∗

2 = 0 for t = t1,



−(T ∗

1 )t + L∗

1T
∗

1 = 0 in D × (t0, t1),

T ∗

1 = T ∗

2 (t0) for t = t1

α(Q−Q(0)) + T ∗

2 = 0 on Ω
(1)
0 × (t0, t1).

Fun
tions T2, Q(t1) are a

epted as approximations to fun
tions T,Q of the full solution

for the Problem I at t > t1, and T2(t1) ∼= T (t1) is taken as an initial 
ondition to solve

the problem on the interval (t1, t2).

STEP 2. Solve problem for S:
St + (Ū ,Grad)S −Div(âS ·Grad S) = fS in D × (t0, t1)

with 
orresponding boundary and initial 
onditions. After that the fun
tion S is a

epted

as an approximate solution, and the fun
tion S(t1) is taken as an initial 
ondition for the

problem for the interval (t1, t2).

STEP 3. Solve equations of the velo
ity module.
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Iterative pro
ess

Given Q(k)

one solve all subproblems from step 1, adjoint problem for this step and

de�ne new 
orre
tion Q(k+1)

Q(k+1) = Q(k) − γ
(j)
k

(α(Q(k) −Q(0)) + T ∗

2 ) on Ω
(j)
0 × (tj−1, tj).

Parameters {γk} 
an be 
al
ulated at α ≈ +0, by the property of dense solvability, as:

γ
(j)
k

=
1

2

tj∫
tj−1

∫

Ω
(j)
0

(T − T
(j)
obs

)2
∣∣∣
σ=0

dΩdt

tj∫
tj−1

∫

Ω
(j)
0

(T ∗

2 )
2
∣∣∣
σ=0

dΩdt

.

In view of the established properties of unique and dense solvability of the


onsidered Problem Inv and data assimilation problem in ea
h time

interval, we 
an state that the system of all approximate solutions {φj}

imparts the minimal value of whole 
ost fun
tional, i.e., is the solution to

the 
onsidered problem for the whole interval (0, t̄ ).
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De�nition : Problem Inv 2 is densely solvable if for any ǫ > 0 there is a solution φ of

the Problem I su
h that ℑ0(φ) < ǫ.

Proposition 1. Problem Inv 2 is uniquely and densely solvable. The solution of

Problem A2 
an be taken as an approximate solution of Problem Inv 2 for su�
iently

small α.
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5. Inverse and variational data assimilation problems, III

Problem Inv 3

Assume that the sea surfa
e salinity (SSS), observed on a subset Ω(j)

of Ω, is denoted

by Sobs ≡ S
(j)
obs

when t ∈ (tj−1, tj),m
(j)
0 is the 
hara
teristi
 fun
tion of this subset

(j = 1, 2, ..., J). Considering the boundary 
ondition for S at z = 0 we write as:

−νS
∂S

∂z
= Q at z = 0 on Ω(j) × (tj−1, tj),

Ū
(−)
n S − νS

∂S

∂z
+ γS(S − Sa) = QS + Ū

(−)
n dS at z = 0 on (Ω\Ω(j))× (tj−1, tj),

where the fun
tion Q ≡ Q(j)(j = 1, 2, ..., J).

Let the fun
tions Q(j)

are �additional unknown fun
tions� and we state the following

inverse problem - Problem Inv 3: �nd the solution φ = (u, v, ξ, T, S) of the Problem

I and fun
tions Q(j)

, su
h that, m
(j)
0 (S − S

(j)
obs

) = 0 on Ω, j = 1, 2, ..., J .
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Variational approach for solving the inverse problem

Introdu
e the 
ost fun
tional ℑα of the form:

ℑα ≡ ℑα(Q,Φ) =
1

2

t̄∫

0

∫

Ω

α|Q−Q(0)|2dΩdt+ ℑ0(Φ) =
J∑

j=1

tj∫

tj−1

ℑ(j)
α dt,

where

ℑ0(Φ) ≡ ℑ0(Q) =
1

2

t̄∫

0

∫

Ω0(t)

m0|S − Sobs|2dΩdt,

ℑ(j)
α =

1

2

tj∫

tj−1

∫

Ω(j)

α|Q−Q(0)|2dΩdt+
1

2

tj∫

tj−1

∫

Ω(j)

m
(j)
0 |S − S

(j)
obs

|2dΩdt.

Here α ≥ 0, is a "regularization"or "penalty"fun
tion ,that may be 
onstant.

Data assimilation problem - Problem A 3: �nd the solution φ of the Problem I and

fun
tions {Q(j)}, su
h that, the 
ost fun
tional is minimal on the set of the solutions.

This problem for the 
ase Ω(j) ≡ Ω(j = 1, 2, ..., J) has been studied and numeri
ally

solved by Agoshkov V.I., Parmuzin E.I. and Shutyaev V.P.[2008℄.
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De�nition : Problem Inv 3 is densely solvable if for any ǫ > 0 there is a solution φ of

the Problem I su
h that ℑ0(φ) < ǫ.

Proposition 1. Problem Inv 3 is uniquely and densely solvable. The solution of

Problem A3 
an be taken as an approximate solution of Problem Inv 3 for su�
iently

small α.
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The optimality system obtained 
onsist of su

essive solving the variational assimilation

problem on intervals t ∈ (tj−1, tj), j = 1, 2, . . . , J . The method 
an be dis
ribed as

follows:

STEP 1. Solve problem for T :

Tt + (Ū ,Grad)T −Div(âT ·Grad T ) = fT in D × (t0, t1)

with 
orresponding boundary and initial 
onditions. After that the fun
tion T is a

epted

as an approximate solution, and the fun
tion T (t1) is taken as an initial 
ondition for

the problem for the interval (t1, t2).

STEP 2. We solve system of equations, whi
h arise from minimization of the

fun
tional Jα on the set of the solution of the equations. This system 
onsists of

equations for S1, S2, Q and system of adjoint equations:



−(S∗

2 )t + L∗

2S
∗

2 = B∗m
(1)
0 (S − S

(1)
obs

) in D × (t0, t1),

S∗

2 = 0 for t = t1,



−(S∗

1 )t + L∗

1S
∗

1 = 0 in D × (t0, t1),

S∗

1 = S∗

2 (t0) for t = t1

α(Q−Q(0)) + S∗

2 = 0 on Ω
(1)
0 × (t0, t1).

Fun
tions S2, Q(t1) are a

epted as approximations to fun
tions S,Q of the full solution

for the Problem I at t > t1, and S2(t1) ∼= S(t1) is taken as an initial 
ondition to solve

the problem on the interval (t1, t2).

STEP 3. Solve equations of the velo
ity module.
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Iterative pro
ess

Given Q(k)

one solve all subproblems from step 1, adjoint problem for this step and

de�ne new 
orre
tion Q(k+1)

Q(k+1) = Q(k) − γ
(j)
k

(α(Q(k) −Q(0)) + S∗

2 ) on Ω
(j)
0 × (tj−1, tj).

Parameters {γk} 
an be 
al
ulated at α ≈ +0, by the property of dense solvability, as:

γ
(j)
k

=
1

2

tj∫
tj−1

∫

Ω
(j)
0

(S − S
(j)
obs

)2
∣∣∣
σ=0

dΩdt

tj∫
tj−1

∫

Ω
(j)
0

(S∗

2 )
2
∣∣∣
σ=0

dΩdt

.

In view of the established properties of unique and dense solvability of the


onsidered Problem Inv and data assimilation problem in ea
h time

interval, we 
an state that the system of all approximate solutions {φj}

imparts the minimal value of whole 
ost fun
tional, i.e., is the solution to

the 
onsidered problem for the whole interval (0, t̄ ).
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6. Information support of solving data assimilation problems

1. Data base (Lebedev S.A., 2005-2010, N.B.Zakharova 2011-2013)
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6.1. New interpolation method. World O
ean (Agoshkov V.I., Zakharova N.B., 2012)

(a) Observation Data (ARGO) (b) SST after interpolation
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6.2. New interpolation method. Bla
k Sea(Agoshkov V.I., Zakharova N.B., Parmuzin

E.I., 2013)

(
) Observation Data 13:58, 22th of

January 2008

(d) SST after interpolation. The radius of

the �neighbourhood� of the nodal point is

0.2 degrees, ∆k = 12 hours
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7. Numeri
al solving some variational

data assimilation problems in the

Bla
k Sea hydrothermodynami
s

model.
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7.1. Mathematical model of the Black Sea hydrothermodynamics

Suppositions

The Earth is the GEOID (Listing, 1872)

All terms of the order ε ≡ (a− b)/a in the mathemati
al

models are omitted

The surfa
e z = 0 is the surfa
e of the �Normal Earth� ellipsoid

The mathemati
al model was write down using �formally�

spheri
al 
oordinates and the �spheri
al approximations� is

taking

The Boussinesq and hydrostati
 approximations are introdu
ed

The vis
osity for
es are des
ribed by ellipti
 operators of 2-nd

and 4-th orders applying s
alar fun
tions (Zalesny V.B.,

Diansky N.A., Gusev A.V.)
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Mathematical model

d~u

dt
+


 0 −f

f 0


 ~u− g · gradξ + Au~u+ (Ak)

2~u = ~f − 1

ρ0
gradPa − g

ρ0
grad

z∫

0

ρ1(T, S)dz
′,

∂ξ

∂t
−m

∂

∂x
(

H∫

0

Θ(z)udz)−m
∂

∂y
(

H∫

0

Θ(z)
n

m
vdz) = f3,

dT

dt
+ ATT = fT ,

dS

dt
+ASS = fS ,

where ~u = (u, v),

Θ(z) ≡ r(z)
R

, r = R− z, 0 < z < H, x ≡ λ, y ≡ θ, n ≡ 1/r, m ≡ 1/(r cos θ). The

fun
tions f3, ξ0 ≡ ξ at t = 0 will be "additional unknowns whi
h must be 
al
ulated too.
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Mathematical model

Here:

~f = ∇
[
Ω̃np − βγ0ζ0,np

]
+∇Ψ,

where

ζ0,np ≡ AM0ζM0 +AS0ζS0 = A0(1− 3 sin2 θ)/2, A0 = 73, 87[sm],

Ω̃np
∼= γ0(AM0ζM0 +AS0ζS0 ) +

4∑
j=1

γjCj cos(σjt+ sjλ+ qj),

or

Ω̃np = γ0Ωnp

j = O1,K1,M2, S2,

Ψ(λ,Θ, t) - �additional potential� of �self-attra
tion� for
es

β = 0, if ζ is 
al
ulated from the geoid surfa
e,

β = 1, if ζ is 
al
ulated from the mean see level.

The fun
tion Ψ(λ, θ, t) 
an be unknown (then the fun
tion G ≡ Ω̃np − βγ0ζ0,np +Ψ is

unknown also).
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Boundary conditions on the "sea surface"ΓS ≡ Ω at z = 0:








H∫

0

Θ~udz


 ~n+ β0mop

√
gH ξ = mop

√
gH ds on ∂Ω,

U
(−)
n u− ν

∂u

∂z
− k33

∂

∂z
Aku = τ

(a)
x

/
ρ0, U

(−)
n v − ν

∂v

∂z
− k33

∂

∂z
Akv = τ

(a)
y

/
ρ0,

Aku = 0, Akv = 0,

U
(−)
n T − νT

∂T

∂z
+ γT (T − Ta) = QT + U

(−)
n dT ,

U
(−)
n S − νS

∂S

∂z
+ γS(S − Sa) = QS + U

(−)
n dS ,

where

Un = ~U · ~N, ~U = (u, v, w) ≡ (~u,w), ~N = (n1, n2, n3) ≡ (~n, n3), U
(−)
n = (|Un| − Un)/2.

The boundary fun
tion dT , dS or QT , QS 
an be unknown also.
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With the fun
tion φ = (u, v, ξ, T, S) known, we 
al
ulate

w(x, y, z, t) =
1

r
(m

∂

∂x
(

H∫

z

rudz′) +m
∂

∂y
(
n

m

H∫

z

rvdz′)), (x, y, t) ∈ Ω× (0, t̄),

P (x, y, z, t) = Pa(x, y, t) + ρ0g(z − ξ) +

z∫

0

gρ1(T, S)dz
′.

Note, that for Un ≡ U ·N (here U = (u, v, w)) we always have

Un = 0 on Γc,w ∪ ΓH .
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Inverse and Data Assimilation Problems for Sea-Ocean Mathematical Models

Agoshkov V.I. and Zalesny V.B. Variation data assimilation te
hnique in

mathemati
al modeling of o
ean dynami
s. � Pure Appl. Geophys., 2011

Springer-Basel AG

Agoshkov V.I., Parmuzin E.I., Shutyaev V.P. A numeri
al algorithm of

variational data assimilation for re
onstru
tion of salinity �uxes on the o
ean

surfa
e, Russ. J. Numer. Anal. Math. Modelling, Vol. 23, No. 2, 2008, pp.

135-161;

V. I. Agoshkov, S. A. Lebedev, and E. I. Parmuzin Numeri
al Solution to the

Problem of Variational Assimilation of Operational Observational Data on the

O
ean Surfa
e Temperature, Izvestiya, Atmospheri
 and O
eani
 Physi
s, 2009,

Vol. 45, No. 1, pp. 69�101;

V. I. Agoshkov, N. B. Zakharova, and E. I. Parmuzin The study and numeri
al

solution of the inverse problem of heat �ows in the o
ean dynami
s model based

on ARGO buoys data. Russ. J. Numer. Anal. Math. Modelling, 2011, V. 26, No.

3, pp. 231-261

MARES2020, 17-20 September, 2013 � p. 50/58



7.2 Numerical experiments

The obje
t of simulation is the Bla
k Sea. We 
an des
ribe the

parameters of the area studied and its geographi
al 
oordinates are:

the grid 286x159x27 (latitude×longitude×depth). The grid steps with

respe
t to x and y are 
onstant and equal 0.05 and 0.04 degrees,

respe
tively. The time step is equal to ∆t = 5 minutes.

The data of SST, whi
h was obtained from Geophysi
al Center of

RAS (Lebedev S.A.), were used for the 
onstru
tion of the fun
tion

Tobs at 
ertain time steps at some points of Bla
k Sea basin.

The mean �ux for January Q(0)

was taken from the database of NCEP

(National Centers for Environmental Predi
tion).

The observation data assimilation module to assimilate Tobs was

in
luded into the thermohydrodynami
s model of the Bla
k Sea. The

time period taken in experiments is 5 days (start from January 2008).
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7.2.1 Numeri
al experiments: the Bla
k Sea 
ir
ulation model, SST

assimilation, 
al
ulations of the �ux Q at z = 0

(a) Cal
ulation using data assimilation

(b) Cal
ulation by the model

(
) Observation of SST
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(a) Deviation assimilated SST from

observations

(b) Deviation model SST from

observations
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7.2.2 Numeri
al experiments: The Bla
k Sea and Azov Sea 
ir
ulation

models, assimilation of mean sea level, 
al
ulations of the �self-attra
tion�

for
es, the tide potential is of 
omplete form

(a) Mean sea level (MSL) (b) MSL + 
onst

(
) MSL (with the 
omplete

potential and assimilation)

(d) MSL by the model (without tidal

for
es and assimilation)
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(a) The in�uen
e of the 
onstant harmoni
s of the tide potential
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Tides in 5th January 2008

(a) tides0h (b) tides6h (
) tides12h

(d) tides18h (e) tides24h
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Conclusion

The results obtained in INM RAS are the theoreti
al ba
kground for the


onstru
tion of Informational-
omputational systems for variational data

assimilation into the o
ean 
ir
ulation model and into the Bla
k Sea model.

Next step of the studying:

the improving the mathemati
al model (liquid boundaries 
onditions, input

data and oth.)

algorithm of the 
oupling of the Bla
k Sea and Azov Sea mathemati
al

models

using the empiri
al relations in data assimilations pro
edures
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