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1. Mathematical model of the ocean hydrother modynamics

- N

i | 0 — .1 /
a — / i —g-gradé + Ayl + (Ap)*d = f — —gradP, — ig?“ad/,ol(T,S)dz’,
dt f 0 PO PO )
0 0 i 0 7
8—§ — ma(/@(z)udz) — ma—y(/@(z)%vdz) = f3,
0 0
dT ds

Y AT =, 24 AGS = fa
dt‘|‘T fr dt+s fs

where @ = (u,v) and f = g - gradG, @(z)ELé’), r=R—2z2 0<z< Hzx=M\y=

O,n=1/r, m=1/(rcos@). The functions G, f3,&9 = £ at t = 0 will be "additional

unknowns which must be calculated too.

o |
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2\

Boundary conditionson the" seasurface'I's =) at z = 0:

p

\

H
(/ @ﬁdz) n + Bomop/ 9H & = mop+/gH ds on 052,

0

UT(L_)u 1/% —kﬁgg—Aku—Tx )/,0 0, U( )’U—I/% —kgg—Ak’U_Ty )/po,

Aku == 0, Akv - O,

_ oT _
Uqg )T_VTg ‘|"7T(T_Ta):QT‘|‘U7g, )dT,

B S B
Ul )S—Vsa_ +7s5(S — Sa) = Qg + Us ds,

where

U, =U-N,U = (u,v,w) = (&,w), N = (n1,n2,n3) = (@, n3), Ul = = (|Un| — Un)/2.

The boundary function dr, dg or QT, Qs can be unknown also.

-
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With the function ¢ = (u,v,&,T,S) known, we calculate

H H
1 0 0
’UJ(.CU,y,Z,t) — ;(m%(/ TUdZ/) + ma_y(% 'rvdz’)), (x7y7t) SROPN (07 5)7

z

P(z,y,2,t) =Pa(w,y,t)+pog(z—€)+/gm(T, S)dz".
0

Note, that for U, = U - N (here U = (u,v,w)) we always have

Un:O on Fc’wUFH.

|
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Black Sea temperature |C| at surface on 11TMAR1989 3
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2. Approximation by splitting method

-

General theory of splitting methods: G.I. Marchuk , N.N. Yanenko, A.A.

Samarsky.

Splitting method in data assimilation: Marchuk G.I., Zalesny V.B. (1993), M.
Wenzel, V.B. Zalesny (1996), V.B. Zalesny (2005).

Studies of inverse and assimilation problems for semidiscrete models in the ocean
dynamics: Agoshkov V.I. (2005-2008).

Studies of class of inverse and data assimilation problems for ocean dynamics
models obtained by splitting method: Agoshkov V.I. (2005, 2006), Zalesny V.B.
(2008, 2010), Agoshkov V.I., Parmuzin E.I., Zakharova N.B. (2010), Agoshkov
V.I., Parmuzin E.I., Shutyaev V.P.(2013).

|
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Problem |

Step 1. We consider the system:

(

T + (U, Grad)T — DiV(CALT - Grad T) = frin D X (tj—17tj)7

T'="1T;_1 for t = tj—1 In D,

_(_ oT _(_

UT(L )T— VTE +’YT(T—Ta) = Qr + UT(L )dT on I'g X (tj—latj)a
oT

< M = 0 on Fw,c X (tj_l,tj),
_(_ oT _(_
ONT

oT
% =0on Iy X (tj_l,tj),

| I =T on D X (tj—17tj)7
where I'yy = 'y, UL'w,0p - the "vertical lateral boundary”, I'y - "the ocean bottom”.

o |
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We consider the subproblem for 7' in the operator form as

(T)t + LT =F+ BQ, te (tj_l,tj),
T:Tj_l, 173=1,2,...,J,

and introduce the additional approximation by the splitting methods:
Step 1.1:

(T1)t + LTy = Fa, te(tj-1,t5),
Thn=T;_1 at t=1t;_1

Step 1.2:
(T2)t + LoTo = F2 + BQ, te (tj—1,t;),

To(tj—1) = T1(ty).

Tg(tj) = Tj ~7T at t= tj.

o |
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The classical form of the subproblem for 75 = T is given by:

‘ 1 or 1 o(r?uwiT) 1 0 5, 90T
Ty + = 4 = = frinD at t € (tj_1,t:),
t+2(w18z+r2 0z 20z Loz JrmD a (tj-1,%)
T:Tl(tj) at t =151,
< oT
—vr— =@ at z =0,
0z
oT
vr— =0 at z = H,
N 0z
where

__ Un| —U 1 1
057 = 20 2 w0y = () +m) a2 =0,

Q=Qr— (T —To) = O T+ TS drp.

o |
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Step 2.

St + (U, Grad)S — Div(ag - Grad S) = fg in D X (tj_l,tj),

S=S5j_1att=1t;_1in D,

_(_ 0S _

Ui s — vs 5~ +75(S — Sa) = Qs + O\ )dg on T'g x (tj_1,t;),

95 0on Iy, x (¢ ti)

A —uvon lw.c —15b3 )

N ; J—1sYg

_ oS _(_

Uy)S+ 2 =0 ds + Qs on Twop X (tj—1,1t5),
ONg

95 Oon 'y x (¢ ti)

_— = on y ;

aNS H 7—150t3)

S; =S5 on D X (tj_l,tj).

|
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We rewrite the subproblem for S in the operator form as

(S)t +LS=F+ BQ, te€ (tj_l,tj),
S=8j_1, 7=12,...,J,

and introduce the additional approximation by the splitting methods:

Step 1.1:
(S1)t + L1S1 = F1, te(tj—1,t5),

S1 =851 at t=1t;_1

Step 1.2:
(S2)t + L2S2 = Fo + BQ, te(tj—1,tj),

Sa(tj—1) = S1(t;).

Sg(tj)ESj%S at t =1;.

|
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The classical form of the subproblem for So = S is given by:

-

where

(=) _ [Unl—Un

( 1 9S 1 9(r?wyS) 1 0 , 0S ,
Si+ = (w1 — + = R D at t€ (tj_1,t;),
t+2<w182+r2 0z ) r28zrys({9z Js in at € (tj-1,t5)
S =S1(t;) at t=t;_1,
< oS
—VSazQ at z =0,
ysa—szo at z = H,

N 0z

1

" 2

1
= (@] + w1) = S (@] + @) at 2 =0,

Q=Qs —5(S—84)—US)S+ TS ds.

|
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Step 3: The subproblems for the velocity components

Step 3.1

0 7
¢ 0
in D X (tj_l,tj),

H
{ gt —div (g @Q(l)dz> — f3 in ) X (tj—latj)a

ug!) + ul!) —g-gradf = g gradG — —-grad (Pa +9 [ (T, S)d2’>
0

2(1) =u;_ 4, §=&_1att=1t;_1,

H
Ik @g(l)dz> -n+ BomopVgHE = mopv/gHds on 00 X (tj—1,t;),

N —=J

If we write down u(}) in the following form: u(1) = Q(l)()\, 0,t) +u' (N, 0, z,t) where

1 H H
v = —/ OuVdz, Hq :/ Odz,
Hy Jo 0

then Step 3.1 is reduced to two subproblems for the functions Q(l),g’l :

|
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Step 3.1

First of them is "The ocean tide theory problem":

p

—/
14 0
) & — diV(ng(l)) = f3 in QX (tj_l,tj)
UD(tj-1) = 77 Jy? Ouj_ydz,  &(tj—1) =&-1 in Q

le)—k Q(l)—ggradﬁzggradG—l in Dx(tj_l,tj)

L (ng(l)) n+ BomopvVgHE = mop/gHds

where

1 1 4 2 _
I =(Ix,1Ip) (gradPa —I—QF/ @dz/ grad p1 (T, S)dz’).
1J0 0

PO

The study and solution of this subproblem and its adjoint problem have the crusial

meaning for one of the inverse and data assimilation problems studied.

o |
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The second subproblem is :

0 —/ _
(ul)e + P uf = % (Hil fOH Odz [ grad p1 (T, S)dz’

< —/ gradpl(T,g)dz’)
0

/ 1 [H
Hl(tj—l) =U; 1 — E/O @uj_ldz

o |
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Step 3.2

0 B _
QEQ) -+ fl(U) g(2) =0in D X (tj_l,tj),
fi(w) 0

Q(Q) = g§1) npu t =t;_1 in D,
g§2) = Q(Q) (tj) in D,

|
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Step 3.3

(3) + (U, Grad)u® — Div(a, - Grad )u® + (Ap)%u®) =0in D x (t;_1,t;),
g(?’) = g(2) att =t;_1 in D,

(a)

Oy u® — vy, a%(j) — k33 2 (Apu®) = =, Apu® =0 on T'g x (t;-1,1;),

0z = PO
! Uﬁf’) 0, 68%(.3) T T (%Akg(:”) Ty = 0, Au®) =0 on Cw,e X (tj—1,t5),
qu_)(f](?’) -N) + 886;\; ) . N + ( Aku(3)) . N = (_]T(L_)d, Apu® = 0on Ty op X (tj—1,t5)
U7 (0® 7))+ 952 70+ (55 Au®) 1, = 0, 44u® = 0 on Tuop X (8-1,1),
68%\(2) = % on 'y X (tj—1,t;5),
\
where

u® = (W@, y®), 7@ = (7 @)y
UB) = (u®, w® @B @), TG = u®),0), +® =+, §b>)_

|
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3. Inverse and variational data assimilation problems, |

et us assume, that the unique function which is obtained by observation data
|—Erocessing is the function &,ps on Q =QUON at t € (tj—1,tj), j=1,2,...,J. Let by —‘
physical meaning this function is an approximation to sea level function £ on €2, i.e on
the boundary, when z = 0. We permit that the function &,,s is known only on the part
of © x (0,t) and we define a support of this function as mg. Beyond of this area we
suppose function &, is trivial.

Let the functions G, f3,&o are "additional unknown functions” and we state the
following inverse problem - Problem Inv 1: find the solution ¢ = (u,v,&,T,S) of the
Problem 1 and functions G, f3,&o, such that, mo(§ — &ops) = 0.

To study this inverse problem we apply general methodology for solving data
assimilation problems (Agoshkov V., 2003) and classical results of the inverse problem
theory (A.N. Tikhonov, M.M. Lavrentiev, V.K. Ivanov, V.V. Vasin, V.G. Romanov,
M.V. Klibanov,Yu.E. Anikonov,S.I. Kabanikhin, A.Hasanov, V.G. Yakhno).

o |
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Variational approach for solving the inver se problem

Introduce the cost functional &, of the form:

Sa = Sal(éo, G, f3,P {ozot Hfo — 5(0)| Lo (0s6) + ay Hf:a — f§0)| Lo (0.5 Lo (9:62))
+ag HG G(o)’ R } ;t /1 3@ ar.
where J
S0(®) = F0(6) = 3 1m0 (€ — Eor)l3 0.5 Lacore)
34 {aOAt H&o B (O)‘ Lo(g:Q) tar Hfg B 0)| Lo(g:Q) (*)
taa [G=GO|| 0+ Imof = o), g O]

Here a = (ag, af,ag), ag > 0, ay > 0, ag > 0 are regularization parameters that may
be dimensional values. Furthermore, it is possible to specify a ¢, ag depending on

ag > 0, (for instance, ag = ag, oy = apt?, etc.).

We can formulate the data assimilation problem - Problem A 1: find the solution ¢
of the Problem 1 and function G, f3,&0, such that, the cost functional is minimal on the

set of the solutions.
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Let us consider the problem on the first time step (tg,t1). Then the optimality

conditions are:

[ t1ao(€o —€9) + ¢ (ko) =0 in Q2
ap(fs—f59)+€ =0 inQx (to,t1)

2\

H
ac(G — GO) —div(/ @gdz) —0 in QX (to,t1),
\ 0

where £*,u] are the solution of the adjoint problem:

)
. 0o -/ . » .
—(uy)t — P uj +ggrad¢* =0 in D X (to,t1)

H
< —& + diV(/O @ﬁdz) =mo(§ — &obs) in Q X (to,t1)

H
_(/ @Qidz) -E+ﬂ0mop\/gH§* =0 on 0f) X (to,tl)
0

£* =0, ut =0 att=t

\

uor here £* = mo(§ — &ops) (t1) at t = t1). J
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Definition : Problem Inv 1 is densely solvable if for any ¢ > 0 there is a solution ¢ of
the Problem I such that Sg(¢) < e.

Proposition 1. If supp(éobs) = Q X [to, t1] and (G, f3) 1, (g:0) = 0 Vt then Problem
Inv1 is uniquely and densely solvable. The solution of Problem A1l can be taken as an

approximate solution of Problem Inv1 for sufficiently small .

Proposition 2. If mes(0Q2N Ty, 0p) > 0 and the function G is sought additionally only
then Problem Inv 1 is densely solvable.

Proposition 3. If mes(supp(&,bs)) > 0 and the function f3 is sought additionally only
then Problem Inv 1 is densely solvable.

o |
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Iterative process

- N

or numerical implementation of the algorithm of solving the whole problem in (tg,t1)
it is sufficient to solve two initial-boundary problems for parabolic equations (after that
T and S will be defined in D X (tgp,%t1)) and carry out Step 3 including the data
assimilation block. A numerical solution of the problem at Step 3 can be obtained by

the following iterative algorithm: if fék),G(k),fék) are defined, we solve the
subproblems from the Step 3 for £y = fék), J3 = fék), G = G(¥) and then solve adjoint
problem and compute the new approximation f§k+1), G(k+1),§ék+1).

(& =g —mlao(g” —€0) 1€ ) 0
$HD = 10 — (s (Y = ) + € inQx (to,10)
Gk+1) — (k) _ Vi (aG(G(k) _ G(O)) _ div(foH @ufdz))
in Q X (to,t1)

provided that / G(i)dQ =0 V.
Q

_/\

\

o |
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In the case of an appropriate selection of parameters {v;} the iterative process
converges. In virtue of the compact solvability property, the following values can be

assumed an efficient choice of ~y:

/ / mo(E®) — €ops) A2t
(/ (€*(t0)) dQ+/t:1/ det—l—/tlf dw/o ul(k)@dz) aQt).

After the criterion of stopping the iteration process is satisfied, it is necessary to used
the computed f§k+l),G(k’+1),§ék+l) to solve other subproblems from the Step 3 and to

obtain an approximate solution to the whole problem in D X (tg,%1).

Tk =

After solving all problems and implementing the iteration process in (tg,t1), the
variation assimilation problem is solved similarly in the subsequent intervals
(tj—1,t5),3 =2,3,.... In view of the established properties of unique and
dense solvability of the considered Problem Inv and data assimilation
problem in each time interval, we can state that the system of all
approximate solutions {¢;} imparts the minimal value of whole cost
functional, i.e., is the solution to the considered problem for the whole

_nterval (0,t). J
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4. Inverse and variational data assimilation problems, 1|

Problem Inv 2
Assume that the sea surface temperature (SST), observed on a subset Q) of €, is
denoted by T,ps = TY) when t € (tj—1,t5), méj) is the characteristic function of this

obs
subset (7 = 1,2,...,J). Considering the boundary condition for T" at z = 0 we write it in

the following form:

T .
_VTg_z =Qatz=0on Q) « (tj—l,tj),

_(_ T _(_ :
Uqg )T—I/Tg— —|—'7T(T—Ta):QT—|—U7(1 )dT at z =0 on (Q\Q(j)) X (tj—17tj)7
<

where the function Q = QU)(j =1,2,...,J).

Let the functions Q) are “additional unknown functions” and we state the following
inverse problem - Problem Inv 2: find the solution ¢ = (u,v,&,T,S) of the Problem
I and functions QYY) | such that, m(()j)(T — T(Egz) =0onQ,5=1,2,...,J.

o |
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Variational approach for solving the inver se problem

Introduce the cost functional &, of the form:

3

t

//a|Q—Q(O)|2det—|—\so Z / s at,
0 ©

1
Sa = —
2
J=1; . 1
where J
) £
(@) =30@ =5 [ [ molT - Tope|?asas
0 Qo(t)
tj tj
- 1 1
¥ =2 / / alQ - Q) Pdqdt + 3 / / m$ | T — T |2dqadt.
ti—1 Q) ti—100)

Here a > 0, is a "regularization” or "penalty” function, that may be constant.
Data assimilation problem - Problem A 2: find the solution ¢ of the Problem 1 and

functions {Q(j)}, such that, the cost functional is minimal on the set of the solutions.

o |
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The optimality system obtained consist of successive solving the variational assimilation

F)roblem on intervals t € (t;—1,tj), 7 =1,2,...,J. The method can be discribed as —‘
follows:

STEP 1. We solve system of equations, which arise from minimization of the

functional J, on the set of the solution of the equations. This system consists of

equations for T7, T, Q and system of adjoint equations:

—(T3)e + L3Ty = B*m (T = T'})) in D x (to, 1),

obs

T35 =0 for t=tq,

—(Ty)e + LiTy =0 in D x (to,t1),
Ty =T5(tg) for t =1t

a(Q—-QO)+ Ty =0 on Q" x (to, t1).
Functions T2, Q(t1) are accepted as approximations to functions 7', Q) of the full solution

for the Problem I at ¢ > t1, and T2(¢t1) = T'(¢t1) is taken as an initial condition to solve

the problem on the interval (¢1,t2).
STEP 2. Solve problem for S:

St + ((_], Grad)S — Div(asg - Grad S) = fg in D X (to,t1)
with corresponding boundary and initial conditions. After that the function S is accepted

as an approximate solution, and the function S(%¢1) is taken as an initial condition for the
problem for the interval (¢1,t2).
TEP 3. Solve equations of the velocity module.
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Iterative process

-

Given Q(F) one solve all subproblems from step 1, adjoint problem for this step and
define new correction Q(F+1)

QD = Q) — D (a(Q® — Q) +175) on QF x (tj_1,1;).
Parameters {7} can be calculated at a = 40, by the property of dense solvability, as:

tj

[ @-1?|  dodt

() _ LUty
e T t
f f (T2*)2 dddt
tj—l Q(().?) =0

In view of the established properties of unique and dense solvability of the

considered Problem Inv and data assimilation problem in each time

interval, we can state that the system of all approximate solutions {¢;}

imparts the minimal value of whole cost functional, i.e., is the solution to
uhe considered problem for the whole interval (0,t). J
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- N

Definition : Problem Inv 2 is densely solvable if for any € > 0 there is a solution ¢ of
the Problem I such that Sg(¢) < e.

Proposition 1. Problem Inv 2 is uniquely and densely solvable. The solution of

Problem A2 can be taken as an approximate solution of Problem Inv 2 for sufficiently

small a.

o |
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5. Inverse and variational data assimilation problems, |11

Problem Inv 3
Assume that the sea surface salinity (SSS), observed on a subset QW) of Q, is denoted
g(7)
obs

( =1,2,...,J). Considering the boundary condition for S at z = 0 we write as:

by Sops = when t € (t;_1,t;), méj) is the characteristic function of this subset

_,/SZ_‘j = Qatz=0 on QW) x (ti—1,t5),

—(— oS _(_ .

U 'S —vs 5~ +75(5 = 8a) = Qs + Up ds at 2= 0 on (2\QD) x (t;-1,1;),
where the function Q = QU)(j =1,2,...,J).
Let the functions Q) are ”additional unknown functions” and we state the following
inverse problem - Problem Inv 3: find the solution ¢ = (u,v,&,T,S) of the Problem
I and functions QY) | such that, méj)(S — S(J)) =0onQ,j=1,2,...,J.

obs

o |
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Variational approach for solving the inver se problem

Introduce the cost functional &, of the form:

3
t

//a|Q—Q(O)|2det—|—\so Z/ s at,
0 ©

Sa =3

[\’)Ir—\

J= 175
where i—1

%&’"):%/ /a|Q—Q(O)|2det+%/ / m§ |5 — 89 12ddt.

ti—1 Q@) ti—1 Q@)
Here a > 0, is a "regularization"or "penalty'"function ,that may be constant.
Data assimilation problem - Problem A 3: find the solution ¢ of the Problem I and
functions {Q(j)}, such that, the cost functional is minimal on the set of the solutions.
This problem for the case QU) = Q(j = 1,2, ..., J) has been studied and numerically
solved by Agoshkov V.I.; Parmuzin E.I. and Shutyaev V.P.[2008].

o |
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Definition : Problem Inv 3 is densely solvable if for any € > 0 there is a solution ¢ of
the Problem I such that Sg(¢) < e.

Proposition 1. Problem Inv 3 is uniquely and densely solvable. The solution of

Problem A3 can be taken as an approximate solution of Problem Inv 3 for sufficiently

small a.

o |
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The optimality system obtained consist of successive solving the variational assimilation

problem on intervals t € (t;—1,t;), j =1,2,...,J. The method can be discribed as

follows:
STEP 1. Solve problem for T':

T; + (U,Grad)T — Div(ar - Grad T) = f1 in D X (to,t1)
with corresponding boundary and initial conditions. After that the function 7" is accepted
as an approximate solution, and the function 7'(t1) is taken as an initial condition for

the problem for the interval (t1,t2).
STEP 2. We solve system of equations, which arise from minimization of the

functional J, on the set of the solution of the equations. This system consists of

equations for S1, S2, @) and system of adjoint equations:
—(S3)e+ 1353 = B*m{"V (S — S})) in D x (to, t1),
5 =0 for t=tq,
—(ST)t + L7ST =0 in D x (to,t1),
T =55(to) for t =1t
(Q—-Q®)+S3=0 on Q(()l) X (to,t1).

Functions S, Q(t1) are accepted as approximations to functions S, @ of the full solution
for the Problem I at ¢ > t1, and Sa(t1) = S(t1) is taken as an initial condition to solve

the problem on the interval (¢1,t2).
TEP 3. Solve equations of the velocity module.
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Iterative process

-

Given Q(F) one solve all subproblems from step 1, adjoint problem for this step and
define new correction Q(F+1)

QU = QW — 41 (a(Q™ — Q) +55) on Qf x (tj-1,t)).

Parameters {7} can be calculated at a = 40, by the property of dense solvability, as:

tj

JoJs=8G02| _ dodt
, 1 ti—1 W) o=0
(J) _ + 0
e TS t
Joorosne| doar
tj—l Q(().?) o=0

In view of the established properties of unique and dense solvability of the

considered Problem Inv and data assimilation problem in each time

interval, we can state that the system of all approximate solutions {¢;}

imparts the minimal value of whole cost functional, i.e., is the solution to
uhe considered problem for the whole interval (0,t). J
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6. | nformation support of solving data assimilation problems

1. Data base (Lebedev S.A., 2005-2010, N.B.Zakharova 2011-2013)

Data Base

«World Ocean -
INM RAS»

|
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6.1. New interpolation method. World Ocean (Agoshkov V.I., Zakharova N.B., 2012)

| N

(a) Observation Data (ARGO) (b) SST after interpolation

| |
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6.2. New interpolation method. Black Sea(Agoshkov V.I., Zakharova N.B., Parmuzin

-

E.I, 2013)

-

45.54

AB.5N

and o

asn] -
2450
44
TRYTE R
43N
425N
42N 4

]

41N %

S i

o e s

GraDS: COLA/ICES

1

2013-08-31 - 16:52 GrADS: COLA/IGES

2 3 4 5 [ 7 8 El 10 1
2013-09-12-19:25

(C) Observation Data 13:58, 22th of (d) SST after interpolation. The radius of

January 2008

[

the "neighbourhood” of the nodal point is

0.2 degrees, Ak = 12 hours

|
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7. Numerical solving some variational
data assimilation problems in the
Black Sea hydrothermodynamics

model.



7.1. Mathematical model of the Black Sea hydrother modynamics

Suppositions

f ® The Earth is the GEOID (Listing, 1872) T

® All terms of the order € = (a — b)/a in the mathematical

models are omitted
® The surface z = 0 is the surface of the "Normal Earth” ellipsoid

® The mathematical model was write down using "formally”
spherical coordinates and the "spherical approximations” is

taking
® The Boussinesq and hydrostatic approximations are introduced

® The viscosity forces are described by elliptic operators of 2-nd

and 4-th orders applying scalar functions (Zalesny V.B.,
Diansky N.A., Gusev A.V.)

o |
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M athematical modd

- N

dd — / i —g-gradé + Ayl + (Ap)*d = f — —gradP, — ig?“ad/,ol(T,S)dz’,
dt f 0 0 0 )
0 0 i 0 7
8_§ — ma(/@(z)udz) — ma—y(/@(z)%vdz) = f3,
0 0

dT dS
AT = fr, &2 4 AgS = fs,
dt+ T fr dt+ S fs

where 4 = (u,v),

O(z) = %, r=R—2z2 0<z< H,z=X\Ny=60,n=1/r, m=1/(rcosf). The

functions f3,&0 = & at t = 0 will be "additional unknowns which must be calculated too.

o |
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M athematical modd

e N

f: V [an — B'YOCO,np] + V'V,

where

Co,np = AnmgCnp + AsyCs, = Ao(l — 3sin? 0)/2, Ag = 73,87[sm],

N 4
Qnp = v0(Ang Sy + AsyCsy) + X v Cjcos(ojt + s; A+ q;),
j=1
or

~

an :')’Oan
j = 01,K1,Ms, 52,

U(A, ©,t) - "additional potential” of "self-attraction” forces
B =0, if ¢ is calculated from the geoid surface,
B =1, if ¢ is calculated from the mean see level.

~

The function W (), 6,t) can be unknown (then the function G = Qyp — Bv0C0,np + V is

unknown also).

o |
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2\

Boundary conditionson the" seasurface'I's =) at z = 0:

p

\

H
(/ @ﬁdz) n + Bomop/ 9H & = mop+/gH ds on 052,

0

UT(L_)u 1/% —kﬁgg—Aku—Tx )/,0 0, U( )’U—I/% —kgg—Ak’U_Ty )/po,

Aku == 0, Akv - O,

_ oT _
Uqg )T_VTg ‘|"7T(T_Ta):QT‘|‘U7g, )dT,

B S B
Ul )S—Vsa_ +7s5(S — Sa) = Qg + Us ds,

where

U, =U-N,U = (u,v,w) = (&,w), N = (n1,n2,n3) = (@, n3), Ul = = (|Un| — Un)/2.

The boundary function dr, dg or QT, Qs can be unknown also.

-

|
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With the function ¢ = (u,v,&,T,S) known, we calculate

H H
1 0 0
’UJ(.CU,y,Z,t) — ;(m%(/ TUdZ/) + ma_y(% 'rvdz’)), (x7y7t) SROPN (07 5)7

z

P(z,y,2,t) =Pa(w,y,t)+pog(z—€)+/gm(T, S)dz".
0

Note, that for U, = U - N (here U = (u,v,w)) we always have

Un:O on Fc’wUFH.

o |
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Black Sea topography [m]

- r -
100 250 500 1000 1500 2000

|
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| nver se and Data Assimilation Problems for Sea-Ocean M athematical M oddl:

|,

-

Agoshkov V.I. and Zalesny V.B. Variation data assimilation technique in
mathematical modeling of ocean dynamics. — Pure Appl. Geophys., 2011
Springer-Basel AG

Agoshkov V.I., Parmuzin E.I., Shutyaev V.P. A numerical algorithm of
variational data assimilation for reconstruction of salinity fluxes on the ocean
surface, Russ. J. Numer. Anal. Math. Modelling, Vol. 23, No. 2, 2008, pp.
135-161;

V. 1. Agoshkov, S. A. Lebedev, and E. I. Parmuzin Numerical Solution to the
Problem of Variational Assimilation of Operational Observational Data on the

Ocean Surface Temperature, Izvestiya, Atmospheric and Oceanic Physics, 2009,
Vol. 45, No. 1, pp. 69-101;

V. I. Agoshkov, N. B. Zakharova, and E. I. Parmuzin The study and numerical
solution of the inverse problem of heat flows in the ocean dynamics model based

on ARGO buoys data. Russ. J. Numer. Anal. Math. Modelling, 2011, V. 26, No.

3, pp. 231-261 J
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7.2 Numerical experiments

The object of simulation is the Black Sea. We can describe the
parameters of the area studied and its geographical coordinates are:
the grid 286x159x27 (latitude xlongitudexdepth). The grid steps with
respect to x and y are constant and equal 0.05 and 0.04 degrees,
respectively. The time step is equal to At = 5 minutes.

The data of SST, which was obtained from Geophysical Center of
RAS (Lebedev S.A.), were used for the construction of the function
T,ps at certain time steps at some points of Black Sea basin.

The mean flux for January Q(?) was taken from the database of NCEP
(National Centers for Environmental Prediction).

The observation data assimilation module to assimilate T,;,, was
included into the thermohydrodynamics model of the Black Sea. The

time period taken in experiments is 5 days (start from January 2008).

|
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7.2.1 Numerical experiments: the Black Sea circulation model, SST
assimilation, calculations of the flux Q at z =0

-

A

46N
455N

45N

44N
43.5N
43N
42.5N
4N

AN N

4IN

28E 29E 30E 31E 32E 33E 34E 35E 36E 37E 38E 39E 40E 41E

1 2 3 4 5 6 7 8 9 10 1" 12

GrADS: COLA/IGES 2011-09-15-15:53 GrADS: COLA/IGES 2011-09-15-15:54

(a) Calculation using data assimilation (b) Calculation by the model
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7.2.2 Numerical experiments: The Black Sea and Azov Sea circulation
models, assimilation of mean sea level, calculations of the ’self-attraction”

forces, the tide potential is of complete form

| .

-50 -—40 -30 -20 =1t 0 10 20 30 40 50 -50 -—40 -30 -20 =1t 0 10 20 30 40 50

GrADS. COLA/IGES 2011-09-15-20.32 GrADS. COLA/IGES 2011-09-15-20.26

(a) Mean sea level (MSL) (b) MSL + const

‘ (C) MSL  (with the complete (d) MSL by the model (without tidal \

potential and assimilation) forces and assimilation)
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Conclusion

f ® The results obtained in INM RAS are the theoretical background for the

construction of Informational-computational systems for variational data

assimilation into the ocean circulation model and into the Black Sea model.

Poccufickaa akanemMmma Haygk
MHCTUTYT BEIYHCAMTENEHOM MATEMATHKM

MHpopMalMoHHO-BBIMMCAMTENbHAaA crucTemMa
MBC-T1

(MHOmA clkmi oreaH)

Nanee

® Next step of the studying:

»

9

the improving the mathematical model (liquid boundaries conditions, input
data and oth.)

algorithm of the coupling of the Black Sea and Azov Sea mathematical
models

using the empirical relations in data assimilations procedures

MARES2020, 17-20 September, 2013 — p.

-

O

5

[e
C



Thank You!

|
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