

Challenges in assessing the status of marine waters: assisting policy-makers and stakeholders in such complex task from the EU project DEVOTES

www.devotes-project.eu

17th -20th September 2013, Varna (Bulgaria)

- Water Framework Directive (WFD: 2000)
- Marine Strategy Framework Directive (MSFD: 2008)

- To prevent degradation and protect and restore aquatic ecosystems quality
- To promote sustainable use of the seas and conserve marine ecosystems.
- To promote specific measures for a progressive reduction of discharges (priority substances)
- Achieve Good Status by 2015 (WFD) and 2020 (MSFD)

DEVelopment **O**f innovative **T**ools for understanding marine biodiversity and assessing good Environmental Status EU FP7 project 'Ocean of Tomorrow' www.devotes-project.eu

DEVOTES background

integrated implementation of the European Marine Strategy Framework and the Water Framework Directives. *Marine Pollution Bulletin*, 60(12): 2175-2186.

DEVOTES and Horizon 2020

EUROPE 2020 targets

Horizon2020

Health, demographic change and well-being Food security, sustainable agriculture, bioeconomy and marine and maritime research Secure, clear and efficient energy Smart, green and integrated transport Climate action, resource efficiency and raw materials Inclusive, innovative and secure societies

\$

Year	DEVOTES work plan
2012	Project starts in October
2012	Assist MSs with DEVOTES partners' experience
2012	Assist MSs with DEVOTES partners' experience
2013	Initial selection of indicators and monitoring tools
2014	Testing/model of indicators and monitoring tools
2015	Validation & proposal of GES integration
2016	Most papers published: project ends
2018	All results and data from DEVOTES available
2020	
	2012 2012 2012 2013 2014 2015 2016 2018

E

Challenges				
Challenges	Objectives	Work Packages		
Interaction pressure-impact- climate change	Improve our understanding of the impact of human activities and climate change on marine biodiversity.	WP1: 'Human pressures and climate change'.		
Cost-benefit measures	Identify barriers and bottlenecks that prevent Good Environmental Status (GEnS) from being achieved	WP2: 'Socio-economic implications of GEnS'.		
Role of indicators GEnS meaning	Test indicators and develop new , innovative ones to assess biodiversity in a harmonized way throughout the 4 regional seas.	WP3: 'Indicator testing and development'.		
Reduce monitoring costs New assessment tools Integration of data	Develop, test and validate innovative integrative modelling and monitoring tools to improve our understanding of ecosystem and biodiversity changes, for integration into a unique and holistic assessment	tools'.		
Participation of stakeholders Public awareness	Propose and disseminate strategies and measures for ecosystems' adaptive management, including the active role of industry and relevant stakeholders	WP7: 'Outreach, stakeholder engagement and product dissemination'.		
E				

What is Good Environmental Status and how do we know when it is attained?

Borja, A., M. Elliott, J.H. Andersen, A.C. Cardoso, J. Carstensen, J.G. Ferreira, A.S. Heiskanen, J.C. Marques, J. Neto, H. Teixeira, L. Uusitalo, M.C. Uyarra, N. Zampoukas, 2013. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? *Marine Pollution Bulletin*.

Human pressures and status assessment **DEVOTES**

Good Environmental Status under the MSFD

It is achieved when physicochemical (including contaminants, litter and noise) and hydrographical conditions are maintained at a level that main structuring components of the ecosystem are present, allowing the functionality of the system to provide resistance and resilience (ability to withstand stress and also ability to recover after a stressor) against deleterious effects of human pressures/activities/impacts, maintaining and delivering the ecosystem services that provide societal benefits in a sustainable way (i.e. pressures associated with uses cumulatively do not hinder the ecosystem components to retain their natural diversity, productivity and dynamic ecological processes, and recovery is rapid and secure if a use ceases)

Borja, A., M. Elliott, J.H. Andersen, A.C. Cardoso, J. Carstensen, J.G. Ferreira, A.S. Heiskanen, J.C. Marques, J. Neto, H. Teixeira, L. Uusitalo, M.C. Uyarra, N. Zampoukas, 2013. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? *Marine Pollution Bulletin*.

The main challenge is to translate this definition into terms suitable to provide an operational tool for policymakers and stakeholders

Borja, A., M. Elliott, J.H. Andersen, A.C. Cardoso, J. Carstensen, J.G. Ferreira, A.S. Heiskanen, J.C. Marques, J. Neto, H. Teixeira, L. Uusitalo, M.C. Uyarra, N. Zampoukas, 2013. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? *Marine Pollution Bulletin*.

An example from seafloor integrity

E

INDICATOR	SAMPLING	CLASSIFICATION	ASSESSMENT
6.1.1 Type, abundance, biomass and areal extent of relevant biogenic substrate	Habitat: remote sensing (multibeam), ROV, video, etc.	EUNIS, habitat suitability modelling, GIS	Approaches used in Habitats Directive
6.1.2 Extent of the seabed significantly affected by human activities for the different substrate	Habitat: remote sensing (<mark>multibeam)</mark> , ROV, video, etc.	EUNIS, habitat suitability modelling, GIS	Approaches used in Habitats Directive
6.2.1 Presence of particularly sensitive and/or tolerant species	Species: <mark>ROV, video</mark> , grabs, diving	Traditional identification, <mark>metagenomics</mark> , GIS	Indices using ratio of sensitive/opportunistic (e.g. AMBI), species protected under some Directives (e.g. habitats)
6.2.2 Multi-metric indices assessing benthic community condition and functionality, such as species diversity and richness, proportion of opportunistic to sensitive species	Species: grabs, diving	Traditional identification, metagenomics	Indices used in the WFD, Biological Trait Analysis
6.2.3 Proportion of biomass or number of individuals in the macrobenthos above specified length/size	Species: grabs, diving	Length measurement	Allometric analysis?
6.2.4 Parameters describing the characteristics of the size spectrum of the benthic community	Species: grabs, diving	Size-spectra measurement	Size-spectra analysis

An example from seafloor integrity

One day

E

N

Traditional analysis

Several months

Several days-weeks

Genomic analysis

An example from seafloor integrity Barcoding

Massive sequencing

Taxonomic identification

Species	Sequence
Phylocheras trispinosus	AGGCTCCA
Hydractinia carnea	AGTCTTCA
Obelia dichotoma	AGGCTTCA
Cavernularia pusilla	AGGCTCCA
Actinia equina	AGACACCA
Tubulanus polymorphus	AGACTCCA
Cerebratulus marginatus	AGGATCCA
Harmothoe glabra	AGGCTCAA
Malmgreniella	
andreapolis	AGGCTCGA
Malmgrenia andreapolis	AAGCTGCA
Cirriformia tentaculata	ATGCTCCA

Standard sequencing

Species	Abundance
Phylocheras trispinosus	5
Hydractinia carnea	6
Obelia dichotoma	73457
Cavernularia pusilla	4
Actinia equina	6
Tubulanus polymorphus	756
Cerebratulus marginatus	677
Harmothoe glabra	87
Malmgreniella	
andreapolis	46
Malmgrenia andreapolis	3
Cirriformia tentaculata	31

Towards a genomic AMBI!

Bourlat, S.J., A. Borja, J. Gilbert, M.I. Taylor, N. Davies, S.B. Weisberg, J. Griffith, T. Lettieri, D. Field, J. Benzie, F.O. Glöckner, N. Rodríguez-Ezpeleta, D.P. Faith, T.P. Bean, M. Obst, 2013. Genomics in marine monitoring: new opportunities for assessing marine health status. *Marine Pollution Bulletin*, 74: 19-31.

Separation

Making GEnS definition operational

'GEnS is achieved when	How is this determined?	What data/information are available?	Which targets or limits to be used?		
physicochemical (including contaminants, litter and noise)	Rapid assessment of pressures using GIS	RSC databases, summed point-source inputs of contaminants; VMS for fishing	Targets established in ad-hoc Directives or RSC		
and hydrographical conditions are maintained at a level	aerial/satellite sensing; habitat surveys; traditional sampling	Seabed maps, modelling , satellite data (waves, currents, temperature)	RSC, expert judgment		
where the structuring components of the ecosystem are present and functioning,	Habitat maps, habitat suitability modelling, genomics, traditional sampling,	EUNIS, regional characterisation ; mammal and bird records; fish stock assessments; ecosystem functioning surveys	Habitats and Birds Directives targets; CFP targets; expert judgement		
enabling the system to be resistant and resilient to harmful effects of human pressures	Multimetric & functional indices, size-spectra analyses; evidence of recovery	National and RSC databases, case-studies and EIA extrapolated to wider areas; Alien and invasive species databases	Adapted targets from other directives (e.g. WFD) or RSC; expert judgement		
where they maintain and provide the ecosystem services 	Analysis of ecosystem services, Contingency and biological valuation	Modelling , GIS analysis of habitats and ecosystems to ecosystem services; data from QSR	None available; some indicators of trends		
that deliver societal benefits 	Economic valuation techniques	Fisheries statistics, monitoring of seafood quality, Databases of uses; fisheries (VMS data), oil & gas, aggregate returns, etc.	Limits for contaminants in seafood, fish stocks under safe limits, seabed extraction within permits		
in a sustainable way in order to retain their natural diversity, productivity and dynamic ecological processes	Productivity values, separation of natural from anthropogenic production; alien species are minimised	National and RSC databases; use of data from small areas extrapolated to larger areas; Alien and Invasive species databases.	Legal limits for contaminants in seafood, fish stocks under safe limits; expert judgement		
and where recovery is rapid and sustained if a use ceases'.	Traditional sampling, trend analysis, recovery after removing stressors	Long-term monitoring series; Alien and Invasive species databases.	Tendency towards the previous state (before pressure)		

Borja, A., M. Elliott, J.H. Andersen, A.C. Cardoso, J. Carstensen, J.G. Ferreira, A.S. Heiskanen, J.C. Marques, J. Neto, H. Teixeira, L. Uusitalo, M.C. Uyarra, N. Zampoukas, 2013. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? *Marine Pollution Bulletin*.

An example from integration

							Final	Final
	Explanation of the	Reference	Recent	Reliability	Weight		Environment	Confidence
Qualitative Descriptors	indicators used	conditions/EQS	trend	(%)	(%)	EQR	al Status	ratio
1 Biological diversity	integrated biological value		NA	69	15	0.51	0.08	10.35
2 Non-indigenous species	ratio non-indigenous sp.	OSPAR	▲	80	10	0.98	0.10	8
3 Exploited fish and shellfish			V	100	15	0.48	0.07	15
	fishing mortality <reference< td=""><td></td><td></td><td>100</td><td></td><td>0.18</td><td></td><td></td></reference<>			100		0.18		
	Spawning stock <reference< td=""><td></td><td></td><td>100</td><td></td><td>0.67</td><td></td><td></td></reference<>			100		0.67		
	% large fish			100		0.59		
4 Marine food webs			▼	70	10	0.40	0.04	7
5 Human-induced eutrophication		WFD	•	94	10	0.96	0.10	9.4
	Nutrients in good status			100		0.80		
	Chlorophyll in high status			100		1.00		
	Optical properties in high							
	status			100		1.00		
	Bloom frequency in high							
	status			70		1.00		
	Oxygen in high status			100		1.00		
6 Seafloor integrity		WFD	•	100	10	0.89	0.09	10
	Area not affected			100		0.87		
	% presence sensitive sp.			100		0.98		
	Mean M-AMBI value			100		0.83		
7 Alteration of hydrographical conditions			•	100	2	1.00	0.02	2
8 Concentrations of contaminants	High % of samples <eqs< td=""><td>WFD</td><td>•</td><td>100</td><td>9</td><td>0.80</td><td>0.07</td><td>9</td></eqs<>	WFD	•	100	9	0.80	0.07	9
	Values are 30% of the most							
9 Contaminants in fish and other seafood	affected in the NEA	WFD	•	30	9	0.60	0.05	2.7
	Values are 50% of the most							
10 Marine litter	affected in Europe	OSPAR		30	5	0.57	0.03	1.5
11 Energy & underwater noise	Moderate ship activity	OSPAR	NA	10	5	0.70	0.04	0.5
Final assessment					100		0.68	75.5
							Good	High

Borja, Á., I. Galparsoro, X. Irigoien, A. Iriondo, I. Menchaca, I. Muxika, M. Pascual, I. Quincoces, M. Revilla, J. Germán Rodríguez, M. Santurtún, O. Solaun, A. Uriarte, V. Valencia, I. Zorita, 2011. Implementation of the European Marine Strategy Framework Directive: A methodological approach for the assessment of environmental status, from the Basque Country (Bay of Biscay). *Marine Pollution Bulletin*, 62(5): 889-904.

DEVOTES structure and partners

Duration of 48 months, from 1st November 2012 to 30st October 2016

Total cost: 12 million euros, requested EC contribution: 9 million euros

Conclusions

- Impleme based or datasets
- Need to marine e societal b
- Need of I
 processe:
- Quantitation
 needed
 requirem
 DEVOTES
 stakehold

E

r than the WFD, ns and existing

conservation of m services and

ing, focusing on nteractions ert judgement social science

demands from ve

Thank you!

Grant agreement nº 308392

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

www.devotes-project.eu

Dr Ángel Borja (aborja@azti.es)

ResearchGate Profile: https://www.researchgate.net/profile/Angel_Borja/ Linkedin: www.linkedin.com/profile/view?id=245091062&trk=tab_pro

17th -20th September 2013, Varna (Bulgaria)