N₂ production through denitrification and anammox in the Ulleung Basin, East/Japan Sea

Taehee Na

(Seoul National University)

Jung-Ho Hyun

(Hanyang University)

Pathways of organic C oxidation in marine sediment

why to understand C oxidation pathways?

 $106(CH_2O) + 16(NH_3) + H_3PO_4 + <u>138O_2</u> = 106(CO_2) + 16(HNO_3^{-}) + H_3PO_4 + 122(H_2O)$ $106(CH_2O) + 16(NH_3) + H_3PO_4 + <u>84.8(HNO_3^{-})</u> = 106(CO_2) + 16NH_3 + H_3PO_4 + 42.4(N_2) + 148.4(H_2O)$ $106(CH_2O) + 16(NH_3) + H_3PO_4 + <u>212(MnO_2)</u> = 106(CO_2) + 16NH_3 + H_3PO4 + 212(Mn^{2+}) + 308(H_2O)$ $106(CH_2O) + 16(NH_3) + H_3PO_4 + <u>424(FeOOH)</u> = 106(CO_2) + 16(NH_3) + H_3PO_4 + 424(Fe^{2+}) + 848(H_2O)$ $106(CH_2O) + 16(NH_3) + H_3PO_4 + 53 H^+ + <u>53(SO_4^{2-})</u> = 106(CO_2) + 16NH_3 + H_3PO_4 + 53(HS^-) + 106(H_2O)$ $106(CH_2O) + 16(NH_3) + H_3PO_4 = 53(CO_2) + 16(NH_3) + H_3PO_4 + 53(CH_4)$

Ulleung Basin, East Sea

Geochemical properties of sediment : Intriguing !

Ulleung Basin (UB)

Rare and Unique sediments of the Ulleung Basin

- High organic carbon contents at depths greater than 2,000m (>2.5% dry wt.) (Lee *et al*. 2008)
- Higher sulfate reduction rate (<u>0.72~1.89mmol m⁻² d⁻¹</u>) than those of other parts of the world (Hyun *et al*. 2010)
- Mn oxide enriched ([MnIV]> 200μmol cm⁻³) sediments (Hyun et al. 2010)
- Nitrogen study of the East Sea (deep sediment) is still very scarce.

Nitrogen cycle in a marine sediment

Nitrogen cycle

Oxidation

Denitrification and anammox

From continental shelf to center of the Ulleung Basin

- ¹⁵N isotope slurries and intact core incubations
- Relative importance of denitrification and anammox for sediment N removal
- Total N₂ production rates
 - : a continental shelf (>100m) to Basin (>2,000m)

Study Area

Slurry incubation

Slurries sediments

Bottom water : **50μM** ¹⁵N-nitrate (99 atom %)

- N₂ production from anammox (ra %)
- ¹⁵N tracers (Thamdrup and Dalsgaard 2002)
- 2.5ml of homogenized sediments (0-2cm, 2-4cm, 4-6cm)
- 1L bottom water was sparged with N₂
- 12hrs(coastal)-72hrs(open sea) incubations
- Injection of 250 μ L ZnCl₂ (50% w/v)

Intact core incubation

- Total N₂ production rate
- 15 cores from each sites = =triplicates*5 time points
- 8L bottom water with O₂
- 12hrs(coastal)-72hrs(open sea) incubations
- Injection of 250-mL ZnCl₂ (50% w/v) to surface sediment
- Mix the sediment to 6cm

Isotope Paring Technique

Calculations

Slurry incubation

- The fraction of ${}^{15}NO_3^{-}(\mathbf{F_N}) = {}^{15}NO_3^{-}/[{}^{14}NO_3^{-}] + [{}^{15}NO_3^{-}]$
- The production of ¹⁴N¹⁵N (*p*²⁹N₂)
- The production of ${}^{15}N{}^{15}N(\boldsymbol{p}^{30}N_2)$
- Denitrification potential rate (nmol N cm⁻³ h⁻¹) = $p^{30}N_2 \cdot F_N^{-2}$
- Anammox potential rate (nmol N cm⁻³ h⁻¹) = $\mathbf{F}_{N}^{-1} \cdot [\mathbf{p}^{29}N_{2} + 2 \cdot (1 \mathbf{F}_{N}^{-1}) \cdot \mathbf{p}^{30}N_{2}]$
- **ra** = Anammox / (Anammox + Denitrification)

Intact core incubation

- Total N₂ production rate $(p_{14}) = (p^{29}N_2 + 2 \cdot p^{30}N_2) \cdot (p^{29}N_2/2 \cdot p^{30}N_2)$
- Denitrification rate (\mathbf{D}_{14}) (µmol N m⁻² h⁻¹) = $\mathbf{p}_{14} \cdot \mathbf{ra}$
- Anammox rate (A_{14}) (µmol N m⁻² h⁻¹) = $p_{14} \cdot (1 ra)$

Results

- 1. Potential N₂ production rate (denitrification & anammox)
- 2. Contribution of anammox for N_2 production (ra %)
- 3. Total N₂ production rate (0-6cm)

Slurry incubation

Potential N₂ production rate

Slurry incubation

Denitrification vs. Anammox

- Denitrification decreases relative to anammox with increasing water depth offshore.
- The associated decrease in availability of organic carbon needed to drive sediment mineralization (Thamdrup and Dalsgaard 2002; Dalsgaard *et al.* 2005; Engström *et al.* 2005).

Black symbol from this study

Bo Thamdrup 2012

Intact core incubation

Total N₂ production

Sites		Depth	Total N ₂
		(m)	µmol N m⁻² h⁻¹
Coastal	KY 4	20	14.05
	KY 6	20	10.91
Shelf	EA4	72	11.28
	EA6	88	9.76
	EB 1	135	10.38
Slope	EA 5	1274	11.26
	EB 3	1697	7.67
	EB 7	1817	6.84
Basin	EB 6	2159	11.02
	EB 5	2202	11.06
	EC 1	2342	7.62

Intact core incubation

Higher Total N₂ production in the UB

Sites	Depth	Total N ₂	Anammox	Denitrification
	(m)		μ mol N m ⁻² h ⁻¹	
Thames Estuary	2-4	241.84	48.94	192.9
North Atlantic	30-81	0.8 - 26.9	0.2 - 5.6	0.6 - 21.2
Baltic Sea	33-85	1.4-9.5	0.1 - 0.9	1.3 - 8.6
Arctic sediments	3-100	1.4 - 14.3	0.0 - 3.8	1.4 - 10.7
Colne Estuary	653	544.5	157.3	387.2
Skagerrak, Kattegat	36-700	6.3 - 9.5	1.2 - 4.4	1.9 - 8.3
Sagami Bay*	1450	36.5 - 51.4	12.8 -18.5	23.8 - 32.9
Ulleung Basin	1700-2300	6.8 - 11.1	3.0 - 6.6	3.8 - 4.5
Washington Margins	2740-3110	1.9 -8.1	0.7 - 3.4	1.3 - 4.7

*Low oxygen saturation(15% air saturation) and up to $40\mu M NO_3^-$

Higher denitrification at EA5? Higher N₂ production in the UB? Importance of Anammox in the UB?

Higher **denitrification** at EA5?

Higher N_2 production in the UB?

- Enhanced primary production associated with coastal upwelling and its subsequent delivery in the basin via Ulleung Warm Eddy (Hyun *et al.* 2009)
- High export flux below 200m depth of the water column (Kim et al. 2009)

Higher organic carbon content in the UB

(>2.5% dry wt.) (Lee et al. 2008)

Importance of **Anammox** in the UB?

 $NH_4^+ + NO_2^- \rightarrow N_2 + 2H_2O$

1. No limitation of NH₄⁺

Higher Anammox in the UB

 $NH_4^+ + NO_2^- \rightarrow N_2 + 2H_2O$

- 1. No limitation of NH₄⁺
- 2. Higher denitrification $\rightarrow NO_2^-$

Possible explanations...

Summary

- We conducted ¹⁵N isotope incubations to determine the rates of denitrification and anammox from continental shelf (>100m) to center of UB (>2,000m).
- Total N₂ production rates using the intact core incubation ranged from 6.8 to 11.1 μ mol N m⁻² h⁻¹.
- The anammox comprised 15~59% of total N₂ production, and its relative significance increased with increasing water depth from shelf (ave. 17%) to the basin (ave. 55%).
- Anammox (3.0~6.6 μmol N m⁻² h⁻¹) and denitrification rates (3.7~4.8 μmol N m⁻² h⁻¹) in the UB were shown to be higher than those observed at other deep marginal sediments.
- Higher organic carbon contents are responsible for the higher total N₂ production rates in the UB.
- Althtough our results demonstrate that anammox is an important N removal pathway in the UB sediments, there still are no its direct evidence.
- Future work is necessary to identify the key factor controlling anammox in the UB.

Благодаря!