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1. Mathematial formulation of the problem
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Boundary onditions on the surfae
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The model approximation by splitting method

General theory of splitting methods: G.I. Marhuk , N.N. Yanenko, À.À.

Samarsky.

Splitting method in data assimilation: Marhuk G.I., Zalesny V.B. (1993), Ì.

Wenzel, V.B. Zalesny (1996), V.B. Zalesny (2005).

Studies of inverse and assimilation problems for semidisrete models in tidal

dynamis problem: Agoshkov V.I. (2005-2007).

Studies of lass of data assimilation problems for oean dynamis models

obtained by splitting method: Agoshkov V.I. (2005, 2006).
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Problem I

Step 1. We onsider the system:











































































































Tt + (Ū ,Grad)T −Div(âT ·Grad T ) = fT in D × (tj−1, tj),

T = Tj−1 for t = tj−1 in D,
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Tj ≡ T on D × (tj−1, tj).
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Step 2.











































































































St + (Ū ,Grad)S −Div(âS ·Grad S) = fS in D × (tj−1, tj),

S = Sj−1 at t = tj−1 in D,
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Step 3.
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Step 3. (ontinued)
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Ū
(−)
n u(3) − νu

∂u(3)

∂z
− k33

∂

∂z
(Aku

(3)) =
τ (a)

ρ0
, Aku

(3) = 0 on ΓS × (tj−1, tj),

U
(3)
n = 0,

∂U (3)

∂Nu
· τ̄w +

(

∂

∂Nk

Aku
(3)

)

· τw = 0, Aku
(3) = 0 on Γw,c × (tj−1, tj),

Ū
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3. SST data assimilation problen

Let us assume, that the unique funtion whih is obtained by observation data

proessing is the funtion Tobs on Ω̄ ≡ Ω ∪ ∂Ω at t ∈ (tj−1, tj), j = 1, 2, . . . , J . Let by

phisial meaning this funtion is an approximation to STT data on Ω, i.e to T
∣

∣

∣

z=0

. We

permit that the funtion Tobs is known only on the part of Ω× (0, t̄) and we de�ne a

support of this funtion as m0. Beyond of this area we suppose funtion Tobs is trivial.

Let the funtion of full �ux Q is an additional unknown funtion ("ontrol") and we

onsider the ost-funtion in the form:

Jα ≡ Jα(Q,φ) =
1

2

t̄
∫

0

∫

Ω

α|Q−Q(0)|2dΩdt+ J0(φ),

J0(φ) =
1

2

t̄
∫

0

∫

Ω

m0|T − Tobs|
2dΩdt.

Here α ≡ α(λ, θ, t) is a regularization funtion( is it possible, that α(λ, θ, t) =onst≥ 0)

and it may be a dimensional quantity; Q(0) ≡ Q(0)(λ, θ, t) is a given funtion.

We an formulate the data assimilation problem : �nd the solution φ of the Problem I

and funtion Q, suh that, the funtional Jα is minimal on the set of the solutions.
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The optimality system obtained onsist of suessive solving the variational assimilation

problem on intervals t ∈ (tj−1, tj), j = 1, 2, . . . , J (Agoshkov V.I., 2006). The method

an be disribed as follows:

STEP 1. We solve system of equations, whih arise from minimization of the

funtional Jα on the set of the solution of the equations.







(T1)t + L1T1 = F1, t ∈ (tj−1, tj),

T1 = Tj−1 at t = tj−1







(T2)t + L2T2 = F2 + BQT , t ∈ (tj−1, tj),

T2(tj−1) = T1(tj).

T2(tj) ≡ Tj
∼= T at t = tj .







(T ∗

2 )t + L∗

2T
∗

2 = B∗m0(T − Tobs) in D × (t0, t1),

T ∗

2 = 0 for t = t1,







(T ∗

1 )t + L∗

1T
∗

1 = 0 in D × (t0, t1),

T ∗

1 = T ∗

2 (t0) for t = t1

α(Q−Q(0)) + T ∗

2 = 0 on Ω× (t0, t1).

Funtions T2, Q(t1) are aepted as approximations to funtions T,Q of the full solution

for the Problem I at t > t1, and T2(t1) ∼= T (t1) is taken as an initial ondition to solve

the problem on the interval (t1, t2).
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STEP 2. Solve problem for S:

St + (Ū ,Grad)S −Div(âS ·Grad S) = fS in D × (t0, t1)

with orresponding boundary and initial onditions. After that the funtion S is aepted

as an approximate solution, and the funtion S(t1) is taken as an initial ondition for the

problem for the interval (t1, t2).

STEP 3. Solve equations of the veloity module.
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Iteration proess

Given Q(k)

one solve all subproblems from step 1, adjoint problem for this step and

de�ne new orretion Q(k+1)

Q(k+1) = Q(k) − γk(α(Q
(k) −Q(0)) + T ∗

2 ) on Ω× (t0, t1).

Parameters {γk} an be alulated at α ≈ +0, by the property of dense solvability, as:
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1

2
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2
∣
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∣

σ=0
dΩdt
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2 )
2
∣

∣

∣

σ=0
dΩdt

.
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4. Speial features of data assimilation proess

Using the �Diret model� � Gusev À.V., Diansky N.À.

Approximating all subproblems by �nite di�erene methods in σ-oordinate

system. (V.B. Zalesny, N.À. Diansky, A.V. Gusev).

Using speial formulae for alulation of SST and et.

Using some fast algorithms for solving data assimilation problems (Agoshkov

V.I., Parmuzin E.I., Shutyaev V.P.).
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5. Numerial experiments

The objet of simulation is the Blak Sea. We an desribe the

parameters of the area studied and its geographial oordinates are:

the grid 286x159x27 (latitude×longitude×depth). The grid steps with

respet to x and y are onstant and equal 0.05 and 0.04 degrees,

respetively. The time step is equal to ∆t = 5 minutes.

The data of SST, whih was obtained from Geophysial Center of

RAS (Lebedev S.A.), were used for the onstrution of the funtion

Tobs at ertain time steps at some points of Blak Sea basin.

The mean �ux for January Q(0)

was taken from the database of NCEP

(National Centers for Environmental Predition).

The observation data assimilation module to assimilate Tobs was

inluded into the thermohydrodynamis model of the Blak Sea. The

time period taken in experiments is 5 days (start from January 2008).
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Observation data, January, 2008.

(a) 1st January 10:37 (b) 6th January 19:30

() 22nd January 13:58
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SST after 1 day of alulation, 1 January, 2008.

(a) Observation data (average SST)

(b) Calulation without assimilation () Calulation with assimilation
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SST after 5 days of alulation, 1-5 January, 2008.

(a) Observation data (average SST)

(b) Calulation without assimilation () Calulation with assimilation
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Di�erene on SST

(a) Tassim − Tmodel after 1 day (b) Tassim − Tmodel after 5 days
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Conlusion

The variational data assimilation problem of �nding the �ux on the sea surfae

using the observation of SST was formulated and studied.

Algorithms of the numerial solution of data assimilation problem were

developed and justi�ed. The assimilation blok was inluded into 3D

hydrodynamis model developed in INM RAS.

The numerial experiments show that assimilation of SST have a small in�uene

to other omponents of the full solution, i.e. sea level funtion, veloity et.

The numerial experiments on�rm the theoretial results and advisability of

using the assimilation blok in 3D model.
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Thank you
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